Influence of solid loading on D-xylose production through dilute sulphuric acid hydrolysis of olive stones

Authors

  • M. Cuevas Department of Chemical, Environmental and Materials Engineering, University of Jaén
  • M. Saleh Department of Chemical, Environmental and Materials Engineering, University of Jaén
  • J. F. García-Martín Instituto de la Grasa, CSIC
  • S. Sánchez Instituto de la Grasa, CSIC

DOI:

https://doi.org/10.3989/gya.0838142

Keywords:

D-xylose, Dilute acid hydrolysis, Hemicellulose, Olive stones, Response surface methodology

Abstract


The selective hydrolysis of hemicellulose from olive stones was attempted in order to achieve a maximum D-xylose yield. For this aim, batch hydrolysis was conducted under different operating conditions of temperature, acid concentration and solid loading. Firstly, distilled water, sulphuric acid and nitric acid were assessed as hydrolytic agents at different temperatures (200, 205, 210 and 220 °C) and at a fixed acid concentration (0.025 M). Sulphuric acid and 200 °C were selected for the subsequent dilute acid hydrolysis optimization based on the obtained D-xylose yields. The combined influence of solid loading (from 29.3 to 170.7 g olive stones into 300 mL acid solution) and sulphuric acid concentration (0.006–0.034 M) on the release of D-xylose was then estimated by response surface methodology. According to a statistical analysis, both parameters had significant interaction effects on D-xylose production. The results illustrated that the higher the solid loading, the higher the required acid concentration. The decrease in the solid/liquid ratio in the reactor had a positive effect on D-xylose extraction and on the amount of acid used. The optimum solid loading and sulphuric acid concentration were determined to be 50 g (solid/liquid ratio 1/6) and 0.016 M, respectively. Under these conditions, the predicted D-xylose yield (expressed as g of sugar per 100 g of dry matter fed) was 20.4 (87.2% of maximum attainable).

Downloads

Download data is not yet available.

References

Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M. 2002. Proceso de sacarificación celulósica del residuo de la extracción del aceite de oliva en etanol. Grasas Aceites 53, 282–288.

Bergmeyer H, Möllering H. 1974. Acetic acid, in Bergmeyer H (Ed.) Methods of enzymatic analysis. Academic Press, New York, 1520–1528.

Cuevas M, Sánchez S, Bravo V, Cruz N, García JF. 2009. Fermentation of enzymatic hydrolysates from olive stones by Pachysolen tannophilus. J. Chem. Technol. Biotechnol. 84, 461–467. http://dx.doi.org/10.1002/jctb.2064

Cuevas M, García JF, Cruz N, Sánchez S. 2013. Generation of D-xylose by hydrothermal treatment of olives endocarps and enzymatic hydrolysis of oligosaccharides. Afinidad 562, 99–106.

Fernández-Bola-os J, Felizón B, Heredia A, Rodríguez R, Guillén R, Jiménez A. 2001. Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technol. 79, 53–61. http://dx.doi.org/10.1016/S0960-8524(01)00015-3

García JF, Sánchez S. Bravo V, Cuevas M. 2010. Autohydrolysis and acid post hydrolysis of olive pruning debris. Afinidad 548, 279–282.

García Martín JF, Cuevas M, Bravo V, Sánchez S. 2010. Ethanol production from olive pruning by autohydrolysis and fermentation with Candida tropicalis. Renew. Energ. 35, 1602–1608. http://dx.doi.org/10.1016/j.renene.2009.12.015

García JF, Sánchez S, Bravo V, Cuevas M, Rigal L, Gaset A. 2011. Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65, 59–65.

García JF, Sánchez S, García J. 2012. Ethanol from Biomass: Application to the Olive-Pruning Debris, in Carasillo DA (Ed.) Liquid Fuels: Types, Properties and Production. Nova Science Publishers, New York, 239–254.

García Martín JF, Sánchez S, Cuevas M. 2013. Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings. Renew. Energ. 51, 382–387. http://dx.doi.org/10.1016/j.renene.2012.10.002

Heitz M, Rubio M, Doat J, Overend RP, Chornet E. 1988. Liquefaction par fractionnement de deux bois tropicaux: Conversion et solubilization aprés un traitement thérmomechanique. Cah Sci Cent Tech For Trop Nogent-sur- Marne 9, 67–102.

Kim I, Lee B, Park J-Y, Choi S-A, Han J-I. 2014. Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohyd. Polym. 99, 563– 567. http://dx.doi.org/10.1016/j.carbpol.2013.08.092 PMid:24274544

Montané D, Salvadó J, Torras C, Farriol X. 2002. Hightemperature dilute acid hydrolysis of olives stones for furfural production. Biomass Bioener. 22, 295–304. http://dx.doi.org/10.1016/S0961-9534(02)00007-7

Overend RP, Chornet E. 1987. Fractionation of lignocellulosics by steam-aqueous pretreatment. Phil. Trans. Roy. Soc. London A. 321, 523–536. http://dx.doi.org/10.1098/rsta.1987.0029

Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B. 1999. Main and interaction effects of acetic acid, furfural and p-hidroxibenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63, 46–55. http://dx.doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J

Parajó JC, Domínguez H, Domínguez JM. 1998. Biotechnological production of xilitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technol. 65, 191–201. http://dx.doi.org/10.1016/S0960-8524(98)00038-8

Puls J, Poutanen K, Körner H, Viikari L. 1985. Biotechnical utilization of wood carbohydrates after steaming pretreatment. Appl. Microb. Biotechnol. 22, 416–423. http://dx.doi.org/10.1007/BF00252783

Tortosa JF, Rubio M, Demetrio G. 1995. Autohidrólisis de tallo de maíz en suspensión acuosa. Afinidad 52, 181–188.

Rafiqul ISM, Sakinah AMM. 2013. Processes for the Production of Xylitol—A Review. Food Rev. Int. 29,127–156. http://dx.doi.org/10.1080/87559129.2012.714434

Saleh M, Cuevas M, García JF, Sánchez S. 2014. Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem. Eng. J. 90, 286–293. http://dx.doi.org/10.1016/j.bej.2014.06.023

Skoulou V, Swiderski A, Yang W, Zabaniotou A. 2009. Process characteristics and products of olive kernel high temperature steam gasification (HTSG). Bioresource Technol. 100, 2444–2451. http://dx.doi.org/10.1016/j.biortech.2008.11.021 PMid:19117753

Van Soest PJ, Wine RH. 1967. Use of detergents in the analysis of fibrous feed. IV. The determination of plant cell wall constituents. J. Assoc. Off. Anal. Chem. 50, 50–5.

Winkelhausen E, Kuzmanova S. 1998. Microbial conversion of D-xylosa to xylitol. J. Ferment. Bioeng. 86, 1–14. http://dx.doi.org/10.1016/S0922-338X(98)80026-3

Published

2015-09-30

How to Cite

1.
Cuevas M, Saleh M, García-Martín JF, Sánchez S. Influence of solid loading on D-xylose production through dilute sulphuric acid hydrolysis of olive stones. Grasas aceites [Internet]. 2015Sep.30 [cited 2024Mar.28];66(3):e084. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1550

Issue

Section

Research

Most read articles by the same author(s)