Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus

Authors

DOI:

https://doi.org/10.3989/gya.0444221

Keywords:

AI, Cyprinion macrostomus, EPA, Fatty acids, h/H, PERMANOVA

Abstract


This study aimed to evaluate the effect of different factors (season, gender, location, total lipid, weight and length) on the fatty acid composition and nutritional quality of Cyprinion macrostomus. The results were evaluated through PERMANOVA, principal coordinates (PCO), and cluster analysis for similarity ranges. An analysis of similarity (ANOSIM) was performed on the distance matrix using multiple permutations within a significant fixed effect (p < 0.05). C18:1ω9, EPA and DHA were the most important fatty acids which had an effect on the nutritional quality in all the factor groups. Total lipid amount, season and length factors were the most influential on the fatty acid compositions of C. macrostomus. Summer and Spring were the best the periods for the good nutritional quality of C. macrostomus in terms of AI (Atherogenicity index), TI (Thrombogenicity index) and h/H (Σhypocholesterolemic/Σhypercholesterolemic fatty acid index). In addition, station, gender and weight had no effect on nutritional quality. The study indicated that C. macrostomus is a potential fish meat for human nutrition with high nutritional value in terms of fatty acid composition.

Downloads

Download data is not yet available.

References

Aguiar AC, Morais DR, Santos LP, Stevanato FB, Visentainer JEL, de Souza NE, Visentainer JV. 2007. Effect of flaxseed oil in diet on fatty acid composition in the liver of Nile Tilapia (Oreochromis niloticus). Arch. Lat. Nutric. 57 (3), 273-277.

Brenna JT. 2002. Efficiency of conversion of alpha-linoleic acidv to long cahin n-3 fatty acids in man. Curr. Op. Clin. Nutrit. Metabol. Care 5 (2), 127-132. https://doi.org/10.1097/00075197-200203000-00002 PMid:11844977

Calder P. 2018. Very long-chain n-3 fatty acids and human health: Fact fiction and the future. Proceedings Nutrit. Soc. 77 (1), 52-72. https://doi.org/10.1017/S0029665117003950 PMid:29039280

Cengiz EI, Ünlü E, Başhan M. 2010. Fatty acid composition of total lipids in muscle tissues of ninefreshwater fish from the River Tigris (Turkey). Turkish J. Biol. 34, 433-438. https://doi.org/10.3906/biy-0903-19

Christie WW. 1992. Gas chromatography and lipids. The Oil Pres, Glaskow.

Coad BW. 1996. Zoogeography of the fishes of the Tigris-Euphrates basin. Zool. Midd. East 13, 51-70. https://doi.org/10.1080/09397140.1996.10637706

EFSA. 2013. Guidance on the assessment criteria for studies evaluating the effectiveness of 422 stunning interventions regarding animal protection at the time of killing. EFSA Panel on 423 Animal Health and Welfare (AHAW), Pharma: Italy, 11 (12), 3486, 40p. https://doi.org/10.2903/j.efsa.2013.3486

Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H, Okolodkov YB. 1998. Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology 20 (1), 41-47. https://doi.org/10.1007/s003000050274

Fernandes CE, Vasconcelos MA, Ribeiro MA, Sarubbo L A, Andrade SA, Melo Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 160, 67-71. https://doi.org/10.1016/j.foodchem.2014.03.055 PMid:24799210

Food and Agriculture Organization-FAO. 2014. The state of world fisheries and aquaculture 2014: Opportunities and challenges, Rome: Italy, 243 p.

Food and Agriculture Organisation-FAO. 2018. The State of World Fisheries and Aquaculture 2018- Meeting the sustainable developing goals. Rome, License: CC BY- NC-SA 3.0 IGO.

Galloway AWE, Winder M. 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE 10 (6), 1-23. https://doi.org/10.1371/journal.pone.0130053 PMid:26076015 PMCid:PMC4468072

Gladyshev M I, Sushchik NN, Makhutova ON. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagland. Lipid Mediat. 107, 117-126. https://doi.org/10.1016/j.prostaglandins.2013.03.002 PMid:23500063

Güler G O, Kıztanır B, Aktümsek A, Citil OB, Özparlak H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chem. 108 (2), 689-694. https://doi.org/10.1016/j.foodchem.2007.10.080 PMid:26059149

Hara A, Radin NS. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420-426. https://doi.org/10.1016/0003-2697(78)90046-5 PMid:727482

Henderson R J, Tocher D R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281-347. https://doi.org/10.1016/0163-7827(87)90002-6 PMid:3324105

Hlais S, El-Bistami D, El-Rahi B, Mattar MA, Obeid OA. 2013. Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men. Lipids 48 (9), 853-861. https://doi.org/10.1007/s11745-013-3819-x PMid:23888318

Jobling J, Leknes O. 2010. Cod liver oil: feed oil influences on fatty acid composition. Aquacult. Internat. 18, 223-230. . https://doi.org/10.1007/s10499-008-9238-y

Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Marine Ecol. Prog. Ser. 446, 1-22. https://doi.org/10.3354/meps09559

Khériji S, EL CAFSI M, Masmoudi W, CastelL JD, Romdhane M S. (2003). Salinity and temperature effects on the lipid composition of mullet sea fry (Mugil cephalus, Linne, 1758). Aquacult. Internat. 11, 571-582. https://doi.org/10.1023/B:AQUI.0000013321.93743.6d

Kolakowska A, Szczygielski M, Bienkiewicz G, Zienkowicz L. 2000. Some of fısh species as a source of n-3 polyunsaturated fatty acids. Acta Ichthyol. Piscator. 30 (2), 59-70. https://doi.org/10.3750/AIP2000.30.2.06

Langroudi H, Mousavi S. 2018. Reproductive biology of lotak, Cyprinion macrostomum Heckel, 1843 (Pisces: Cyprinidae), from the Tigris River drainage. Iranian J. Fisher. Sci. 17 (2), 288-299.

Matos AP, Matos AC, Moecke EHS. 2019. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian J. Food Technol. 22, 1-11. https://doi.org/10.1590/1981-6723.19318

Mellery J, Geay F, Tocher DR, Debier C, Rollin X, Larondelle Y. 2016. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet. PLoS One, 11 (10), 1-24. https://doi.org/10.1371/journal.pone.0164478 PMid:27736913 PMCid:PMC5063364

Napolitano GE. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21-44. M.T. Arts and B.C. Wainman (eds.). In: Lipids in Freshwater Ecosystems, Springer, New York. https://doi.org/10.1007/978-1-4612-0547-0_3

Norambuena F, Rombenso A, Turchini GM. 2016. Towards the optimization of performance of Atlantic salmon reared at different water temperatures via the manipulation of dietary ARA/EPA ratio. Aquaculture 450, 48-57. https://doi.org/10.1016/j.aquaculture.2015.06.044

Parrish CC. 2009. Lipids in aquatic ecosystems. M.T. Arts. M.T. Brett. and M.J. Kainz (Eds.). In: Essential fatty acids in aquatic food webs. pp. 309-326. Springer. New York. https://doi.org/10.1007/978-0-387-89366-2_13

Parzanini C, Colombo SM, Kainz MJ, Wacker A, Parrish CC, Arts MT. 2020. Discrimination between freshwater and marine fish using fatty acids: ecological implications and future perspectives. Environment. Rev. 28 (4), 1-14. https://doi.org/10.1139/er-2020-0031

Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Experiment. Marine Biol. Ecol. 409 (1-2), 290-299. https://doi.org/10.1016/j.jembe.2011.09.009

Ramos-Filho, MM, Ramos MIL, Hiane PA, Souza EMT. 2008. Perfil lipídico de quatro espécies de peixes da região pantaneira de Mato Grosso do Sul. Food Sci. Technol. 28 (2), 361-365. https://doi.org/10.1590/S0101-20612008000200014

Rhee JJ, Kim E, Buring JE, Kurth T. 2017. Fish consumption. omega-3 fatty acids and risk of cardiovascular disease. Am. J. Prevent. Med. 52 (1), 10-19. https://doi.org/10.1016/j.amepre.2016.07.020 PMid:27646568 PMCid:PMC5167636

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype. feeding system and slaughter weight on the quality of light lambs. Livestock Product. Sci. 77 (2-3), 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3

Simat V, Bogdanovic T, Poljak V, Petricevic S. 2015. Changes in fatty acid composition. atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus. 1758) during storage on ice: Effect of fish farming activities. J. Food Composit. Anal. 40, 120-125. https://doi.org/10.1016/j.jfca.2014.12.026

Simopoulos AP. 2008. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Experiment. Biol. Med. 233, 674-688. https://doi.org/10.3181/0711-MR-311 PMid:18408140

Şen Özdemir N, Feyzioğlu AM, Caf F, Yıldız, I. 2017. Seasonal changes in abundance, lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian J. Fisher. 64 (3), 55-66. https://doi.org/10.21077/ijf.2017.64.3.62172-09

Tocher DR. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult. Res. 41, 717-732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

Turchini GM, Francis DS. 2009. Fatty acid metabolism (desaturation. elongation and β-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British J. Nutrit. 102 (1), 69-81. https://doi.org/10.1017/S0007114508137874 PMid:19123959

Viso AC, Marty JC. 1993. Fatty acids from 28 marine microalgae. Phytochem. 34 (6), 1521-1533. https://doi.org/10.1016/S0031-9422(00)90839-2

Wijekoon M, Parrish CC, Mansour A. 2021. Effect of Growth Temperature on Muscle Lipid Class and Fatty Acid Composition in Adult Steelhead Trout (Oncorhynchus mykiss) Fed Commercial Diets with Different ω6 to ω3 Fatty Acid Ratios. J. Aquacult. Res. Develop. 12 (6)-643, 1-11.

Williams CM, Burdge G. 2006. Long-chain n-3 PUFA: plant vs. marine sources. Proceed. Nutrit. Soc. 65 (1), 42-50. https://doi.org/10.1079/PNS2005473 PMid:16441943

Published

2023-05-25

How to Cite

1.
Şen Özdemir N, Koyun M, Caf F, Kırıcı M. Factors affecting nutritional quality in terms of the fatty acid composition of Cyprinion macrostomus. Grasas aceites [Internet]. 2023May25 [cited 2024Mar.28];74(2):e508. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1984

Issue

Section

Research

Funding data

Bingöl Üniversitesi
Grant numbers BAP-2021-35585