Evaluation of the hepatic bioconversion of α-linolenic acid (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in rats fed with oils from chia (Salvia hispánica) or rosa mosqueta (Rosa rubiginosa)

Authors

  • R. Valenzuela B. School of Nutrition Institute of Biomedical Sciences, Faculty of Medicine, University of Chile
  • J. G. Gormáz Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile
  • L. Masson S. Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile
  • M. Vizcarra Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile
  • P. Cornejo Z. Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile
  • A. Valenzuela B. Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile and Faculty of Medicine, University de los Andes
  • G. Tapia O. Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile

DOI:

https://doi.org/10.3989/gya.057111

Keywords:

α-linolenic acid, Chia oil, Docosahexaenoic acid, Eicosapentaenoic acid, Fatty acid bioconversion, Rosa mosqueta oil

Abstract


The high dietary intake of n-6 fatty acids in relation to n-3 fatty acids generates health disorders, such as cardiovascular diseases, inflammatory diseases and other chronic diseases. The consumption of fish, which is rich in n-3 fatty acids, is low in Latin America and it is necessary to seek other alternatives, such as chia oil (CO) or rosa mosqueta oil (RMO), which are rich in α-linolenic acid (ALA), the precursor of the n -3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This study evaluates the hepatic bioconversion of ALA to EPA and DHA and the damage to the liver (histology and transaminase) in Sprague- Dawley rats fed different vegetable oils. Four experimental groups (n = 9 animals each group) were fed the following dietary supplements for 21 days: a) sunflower oil (SFO), b) RMO, c) CO d) olive oil with fish oil added (EPA and DHA) (OO/FO). RMO and CO increased the hepatic levels of ALA, EPA and DHA and decreased the n-6/n-3 ratio compared to SFO (p < 0.05) without changes in the parameters of liver damage. It is concluded that CO and RMO may be nutritional alternatives for providing ALA for its bioconversion to EPA and DHA.

Downloads

Download data is not yet available.

References

Abete P, Testa G, Galizia G, Della-Morte D, Cacciatore F, Rengo F. 2009. PUFA for human health: diet or supplementation?. Curr. Pharm. Des. 15, 4186-90. http://dx.doi.org/10.2174/138161209789909665 PMid:20041820

Araya J, Rodrigo R, Pettinelli P, Araya AV, Poniachik J, Videla LA. 2010. Decreased liver fatty acid D-6 and D-5 desaturase activity in obese patients. Obesity 18, 1460-3. http://dx.doi.org/10.1038/oby.2009.379 PMid:19875987

Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J. 2004. Increase in longchain polyunsaturated fatty acid n6/n 3 ratio in relation to hepatic steatosis in patients with non- alcoholic fatty liver disease. Clin. Sci. 106, 635-43. http://dx.doi.org/10.1042/CS20030326 PMid:14720121

Bassaganya-Riera Y, Hontecillas R. 2010. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 13, 569-73. http://dx.doi.org/10.1097/MCO.0b013e32833b648e PMid:20508519    PMCid:2947030

Bell JG, McGhee F, James R. Dick, Douglas RT. 2005. Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquacult. 243, 305-314. http://dx.doi.org/10.1016/j.aquaculture.2004.10.016

Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. http://dx.doi.org/10.1139/o59-099

Brenner RR. 2003. Hormonal modulation of D6 and D5 desaturases: case of diabetes. Prostag. Leukotr. Ess. 68, 151-162. http://dx.doi.org/10.1016/S0952-3278(02)00265-X

Burr GO and Burr MM. 1930. On the nature and role of fatty acids essential in nutrition. J. Biol. Chem. 86, 587-621.

Calò L, Bianconi L, Colivicchi F, Lamberti F, Loricchio ML, de Ruvo E, Meo A, Pandozi C, Staibano M, Santini M. 2005. N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J. Am. Coll. Cardiol. 45, 1723-8. http://dx.doi.org/10.1016/j.jacc.2005.02.079 PMid:15893193

Cederholm T and Palmblad J. 2010. Are omega-3 fatty acids options for prevention and treatment of cognitive decline and dementia? Curr. Opin. Clin. Nutr. Metab. Care 13, 150-5. http://dx.doi.org/10.1097/MCO.0b013e328335c40b PMid:20019606

Chicco A, D’Alessandro M, Hein G, Oliva M, Lombardo Y. 2009. Dietary chia seed (Salvia hispanica) rich in–linolenic acid improves adiposity and normalises hypertriacylglycerolamia and insulin resistance in dyslipaemic rats. Br. J. Nutr. 101, 41 50. http://dx.doi.org/10.1017/S000711450899053X PMid:18492301

Cunnane SC. 2003. Problems with essential fatty acids: time for a new paradigm? Prog. Lipid Res. 42, 544-68. http://dx.doi.org/10.1016/S0163-7827(03)00038-9

Cho HP, Nakamura M, Clarke SD. 1999a. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J. Biol. Chem. 274, 37335-9. http://dx.doi.org/10.1074/jbc.274.52.37335 PMid:10601301

Cho HP, Nakamura MT, Clarke SD. 1999b. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274, 471-7. http://dx.doi.org/10.1074/jbc.274.1.471 PMid:9867867

Espada C, Berra M, Martinez M, Eynard A, Pascualini M. 2007. Effect of Chia oil (Salvia Hispanica) rich in ω-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostag. Leukotr. Ess. 77, 21-28. http://dx.doi.org/10.1016/j.plefa.2007.05.005 PMid:17618100

Fasano E, Serini S, Piccioni E, Innocenti I, Calviello G. 2010. Chemoprevention of lung pathologies by dietary n-3 polyunsaturated fatty acids. Curr. Med. Chem. 17, 3358-76. PMid:20712568

Fetterman JW Jr, Zdanowicz MM. 2009. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am. J. Health Syst. Pharm. 66, 1169-79. http://dx.doi.org/10.2146/ajhp080411 PMid:19535655

Firestone, D. 1997. In Oficial Methods of Analysis of AOAC International (Cunniff, P., Ed.), pp. 963-964, Assoc. Official Anal. Chem., Gaithersburg, MD.

Franco D, Pinelo M, Sineiro J, Núñez MJ. 2007. Processing of Rosa rubiginosa: extraction of oil and antioxidant substances. Bioresource Technol. 18, 3506-12. http://dx.doi.org/10.1016/j.biortech.2006.11.012 PMid:17204419

Friedman AN. 2010. Omega-3 fatty acid supplementation in advanced kidney disease. Semin Dial. 23, 396-400. http://dx.doi.org/10.1111/j.1525-139X.2010.00748.x PMid:20701719

Gormaz JG, Rodrigo R, Videla LA, Beems M. 2010. Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog. Lipid Res. 49, 407-19. http://dx.doi.org/10.1016/j.plipres.2010.05.003 PMid:20553760

Guide for the Care and Use of Laboratory Animals. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 8th edition. Washington (DC): National Academies Press (US); 2011.

Haggarty P. 2010. Fatty acid supply to the human fetus. Annu Rev Nutr. 30, 237-55. http://dx.doi.org/10.1146/annurev.nutr.012809.104742 PMid:20438366

Harris WS. 2009. The omega-3 index: from biomarker to risk marker to risk factor. Curr Atheroscler Rep. 11, 411-7. http://dx.doi.org/10.1007/s11883-009-0062-2 PMid:19852881

Hoffman DR, Boettcher JA, Diersen-Schade DA. 2009. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostag. Leukotr. Ess. 81, 151-8. http://dx.doi.org/10.1016/j.plefa.2009.05.003 PMid:19505812

Holman RT, Johnson SB, Hatch TF. 1982. A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617-23. PMid:6801965

Holman RT. 1998. The slow discovery of the importance of omega 3 essential fatty acids in human health. J. Nutr. 128, 427S-33S. PMid:9478042

Hurst S, Zainal Z, Caterson B, Hughes CE, Harwood JL. 2010. Dietary fatty acids and arthritis. Prostag. Leukotr. Ess. 82, 315-8. http://dx.doi.org/10.1016/j.plefa.2010.02.008 PMid:20189789

Kamal-Eldin A. and Andersson R. 1997. A Multivariate Study of the Correlation Between Tocopherol Content and Fatty Acid Composition in Vegetable Oils. J. Am. Oil Chem. Soc. 74, 375-80. http://dx.doi.org/10.1007/s11746-997-0093-1

Kanai S, Uto K, Honda K, Hagiwara N, Oda H. 2011. Eicosapentaenoic acid reduce warfarin-induced arterial calcification in rats. Atherosclerosis 215, 43-51. http://dx.doi.org/10.1016/j.atherosclerosis.2010.12.001 PMid:21193197

Knoc B, Matthew B, Roy N, McNabb W. 2009. Study of the effects dietary polyunsaturated fatty acids: Molecular mechanisms involved in intestinal inflammation. Grasas Aceites 60, 8-21.

Kim W, McMurray DN, Chapkin RS. 2010. n-3 polyunsaturated fatty acids--physiological relevance of dose. Prostag. Leukotr. Ess. 82, 155-8. http://dx.doi.org/10.1016/j.plefa.2010.02.028 PMid:20188532    PMCid:2875929

Li D, Hu X. 2009. Fish and its multiple human health effects in times of threat to sustainability and affordability: are there alternatives? Asia Pac. J. Clin. Nutr. 18, 553-63. PMid:19965348

Lundebye AK, Berntssen MHG, Lie G, Ritchie P. Isosaari H, Kiviranta T, Vartianen T. 2004. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin-like PCBs in Atlantic salmon (Salmo salar) Aquacult. Nut. 10, 199-207. http://dx.doi.org/10.1111/j.1365-2095.2004.00299.x

Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-Choudhury N. 2010. Fish oil prevents breast cancer cell metastasis to bone. Biochem. Biophys. Res. Commun. 402, 602-7. http://dx.doi.org/10.1016/j.bbrc.2010.10.063 PMid:20971068    PMCid:2993881

Molendi-Coste O, Legry V, Leclercq IA. 2011. Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol. Res. Pract. Article ID 364040. http://dx.doi.org/10.1155/2011/364040 PMid:21197079    PMCid:3004387

Muhlhausler BS, Gibson RA, Makrides M. 2010. Effect of long-chain polyunsaturated fatty acid supplementation during pregnancy or lactation on infant and child body composition: a systematic review. Am. J. Clin. Nutr. 92, 857-63. http://dx.doi.org/10.3945/ajcn.2010.29495 PMid:20685946

Nakamura MT and Nara TY. 2004. Structure, function, and dietary regulation of D6, D5, and D9 desaturases. Annu. Rev. Nutr. 24, 345-76. http://dx.doi.org/10.1146/annurev.nutr.24.121803.063211 PMid:15189125

Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. 2010. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc. Nutr. Soc. 69, 232-43. http://dx.doi.org/10.1017/S0029665110000042 PMid:20158940

Orellana M, Varela N, Guajardo V, Araya J, Rodrigo R. 2002. Modulation of rat liver cytochrome P450 activity by prolonged red wine consumption. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 131, 161-6. http://dx.doi.org/10.1016/S1532-0456(01)00292-7

Picq M, Chen P, Perez M, Michaud M, Véricel E, Guichardant M, Lagarde M. 2010. DHA metabolism: targeting the brain and lipoxygenation. Mol. Neurobiol. 42, 48-51. http://dx.doi.org/10.1007/s12035-010-8131-7 PMid:20422316    PMCid:2894371

Poudyal H, Panchal S, Waaders J, Ward L, Brown L. 2011. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in dietinduced obese rats. J. Nut. Biochem. In press.

Rodrigo R, Cereceda M, Castillo R, Asenjo R, Zamorano J, Araya J, Castillo-Koch R, Espinoza J, Ernesto Larraín. 2008. Prevention of atrial fibrillation following cardiac surgery: Basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning. Pharmacol. Therapeut. 118, 104-27. http://dx.doi.org/10.1016/j.pharmthera.2008.01.005

Roth EM and Harris WS. 2010. Fish oil for primary and secondary prevention of coronary heart disease. Curr. Atheroscler. Rep. 12, 66-72. http://dx.doi.org/10.1007/s11883-009-0079-6 PMid:20425273

Simopoulos AP. 2008. The importance of the omega-6/ omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674-88. http://dx.doi.org/10.3181/0711-MR-311 PMid:18408140

Schmitz G, Ecker J. 2008. The opposing effects of n-3 and n-6. Prog. Lipid Res. 47, 147-55. http://dx.doi.org/10.1016/j.plipres.2007.12.004 PMid:18198131

Sprague M, Eldar A, Bendiksen, James RD, Fiona S, Jarunan P, Marc HG, Berntssen, Douglas RT, John GB. 2010. Effects of decontaminated fish oil or a fish and vegetable oil blend on persistent organic pollutant and fatty acid compositions in diet and flesh of Atlantic salmon (Salmo salar). Brit. J.Nutrit. 103, 1442-1451. http://dx.doi.org/10.1017/S0007114510000139 PMid:20193093

Szymanski KM, Wheeler DC, Mucci LA. 2010. Fish consumption and prostate cancer risk: a review and meta-analysis. Am. J. Clin. Nutr. 92, 1223-33. http://dx.doi.org/10.3945/ajcn.2010.29530 PMid:20844069

Valenzuela A, Sanhueza J, Nieto S. 2006. Docosahexaenoic acid (DHA) essentiality and requirements: why and how to provide supplementation. Grasas Aceites 57, 229-37. http://dx.doi.org/10.3989/gya.2006.v57.i2.43

Valenzuela A, 2009. Docosahexaenoic acid (DHA), an essential fatty acid for the proper functioning of neuronal cells: Their role in mood disorders. Grasas Aceites 60, 203-12. http://dx.doi.org/10.3989/gya.085208

Valladares J, Palma M, Sandoval C, Carvajal F, 1986. Crema de aceite de semilla de mosqueta (Rosa aff. Rubiginosa L.) II parte: Estudio de las propiedades físico-químicas, de estabilidad, e•cacia cosmética y aplicación sistemática en clínica. Anales de la Real Academia de Farmacia. 51, 597-612.

Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. 2005. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 46, 706-15. http://dx.doi.org/10.1194/jlr.M400335-JLR200 PMid:15654130    PMCid:2430181

Zúñiga J, Venegas F, Villarreal M, Núñez D, Chandía M, Valenzuela R, Tapia G, Varela P, Videla LA, Fernández V. 2010. Protection against in vivo liver ischemia-reperfusion injury by n-3 long-chain polyunsaturated fatty acids in the rat. Free Radic. Res. 44, 854-63. http://dx.doi.org/10.3109/10715762.2010.485995 PMid:20528561

Downloads

Published

2012-03-30

How to Cite

1.
Valenzuela B. R, Gormáz JG, Masson S. L, Vizcarra M, Cornejo Z. P, Valenzuela B. A, Tapia O. G. Evaluation of the hepatic bioconversion of α-linolenic acid (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in rats fed with oils from chia (Salvia hispánica) or rosa mosqueta (Rosa rubiginosa). Grasas aceites [Internet]. 2012Mar.30 [cited 2024Mar.28];63(1):61-9. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1355

Issue

Section

Research