Lipid profile, volatile compounds and oxidative stability during the storage of Moroccan Opuntia ficus-indica seed oil
DOI:
https://doi.org/10.3989/gya.1129212Keywords:
β-Sitosterol, γ-Tocopherol, Opuntia ficus-indica, Oxidative stability, Peroxide valueAbstract
The fatty acids, sterol, tocopherol and volatile compositions of Moroccan cold-pressed cactus (Opuntia ficus-indica) seed oil were studied. The most abundant fatty acid, tocopherol and sterol were linoleic acid (60.6%), γ-tocopherol (533 mg/kg) and β-sitosterol (6075 mg/kg), respectively. In this study, 23 volatile compounds were identified with perceivable odor attributes for 14 compounds. The oxidative quality of cactus seed oil was monitored over 4 weeks at 50 °C. Increases in PV, K232 and FFA were detected during the first two weeks as well as a decrease in the induction time; whereas no change was reported for the K270 values. The amount of total phenolic content increased until it reached 0.3 mg/kg and then decreased by the end of the storage period; while tocopherols started to decrease after the first week. The fat-free residue extracts showed a very strong effect to reduce the oxidation of linoleic acid. Consequently, the extracts were significantly more effective to bleach β-carotene in the β-carotene-linoleic acid assay in comparison with the control.
Downloads
References
Almoselhy R. 2021. Comparative Study of Vegetable Oils Oxidative Stability using DSC and Rancimat Methods. Egypt. J. Chem. 64 (1), 299-312.
Bonte A, Bruehl L, Vosmann K, Matthäus B. 2017. A chemometric approach for the differentiation of sensory good and bad (musty/fusty) virgin rapeseed oils on basis of selected volatile compounds analyzed by dynamic headspace GC-MS. Eur. J. Lipid Sci. Technol. 119 (4), 1600259. https://doi.org/10.1002/ejlt.201600259
Chahdoura H, Barreira JC, Adouni K, Mhadhebi L, Calhelha RC, Snoussi M, Majdoub H, Flamini G, Ferreira IC, Achour L. 2017. Bioactivity and chemical characterization of Opuntia macrorhiza Engelm.seed oil: potential food and pharmaceutical applications. Food Funct. 8 (8), 2739-2747. https://doi.org/10.1039/C7FO00731K PMid:28745380
Ciriminna R, Bongiorno D, Scurria A, Danzì C, Timpanaro G, Delisi R, Avellone G, Pagliaro M. 2017. Sicilian Opuntia ficus-indica seed oil: Fatty acid composition and bio-economical aspects. Eur. J. Lipid Sci. Technol. 119 (11), 1700232. https://doi.org/10.1002/ejlt.201700232
DGF. 2013. Deutsche Gesellschaft für Fettwissenschaften E. V, Deutsche einheitliche Methoden zur Untersuchung von fetten, fett Produkten, Tensiden und verwandten Stoffen, wissenschaftliche Verlags Gesellschaft, Stuttgart
El Mannoubi I, Barrek S, Skanji T, Casabianca H, Zarrouk H. 2009. Characterization of Opuntia ficus-indica seed oil from Tunisia. Chem. Nat. Compd. 45 (5), 616-620. https://doi.org/10.1007/s10600-009-9448-1
Gharby S, Harhar H, Charrouf Z, Bouzobaa Z, Boujghagh M, Zine S. (2013). In Physicochemical composition and oxidative stability of Opuntia ficus-indica seed oil from Morocco, VIII International Congress on Cactus Pear and Cochineal 1067, 83-88. https://doi.org/10.17660/ActaHortic.2015.1067.11
Gharby S, Guillaume D, Nounah I, Harhar H, Hajib A, Matthäus B, Charrouf Z. 2021. Shelf-life of Moroccan prickly pear (Opuntia ficus-indica) and argan (Argania spinosa) oils: a comparative study. Grasas Aceites 72 (1), e397. https://doi.org/10.3989/gya.1147192
Goswami D, Basu JK, De S. 2013. Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit. Rev. Biotechnol. 33 (1), 81-96. https://doi.org/10.3109/07388551.2012.672319 PMid:22676042
Hu W, Zhang L, Li P, Wang X, Zhang Q, Xu B, Sun X, Ma F, Ding X. 2014. Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Talanta 129, 629-635. https://doi.org/10.1016/j.talanta.2014.06.010 PMid:25127643
Lerma-García MJ, Simo-Alfonso EF, Chiavaro E, Bendini A, Lercker G, Cerretani L. 2009. Study of chemical changes produced in virgin olive oils with different phenolic contents during an accelerated storage treatment. J. Agric. Food Chem. 57 (17), 7834-7840. https://doi.org/10.1021/jf901346n PMid:19681611
Matthäus B, Özcan MM. 2011. Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L.) seed oils. Sci. Hortic. 131, 95-98. https://doi.org/10.1016/j.scienta.2011.09.027
Méndez E, Sanhueza J, Speisky H, Valenzuela A. 1996. Validation of the Rancimat test for the assessment of the relative stability of fish oils. J. Am. Oil Chem. Soc. 73 (8), 1033-1037. https://doi.org/10.1007/BF02523412
Mohdaly AAA, Sarhan MA, Mahmoud A, Ramadan MF, Smetanska I. 2010. Antioxidant efficacy of potato peels and sugar beet pulp extracts in vegetable oils protection. Food Chem. 123 (4), 1019-1026. https://doi.org/10.1016/j.foodchem.2010.05.054
Morales MT, Przybylski R. 2013.Olive oil oxidation. In Handbook of olive oil, Springer, 479-522. https://doi.org/10.1007/978-1-4614-7777-8_13
Nounah I, Gharby S, Hajib A, Harhar H, Matthäus B, Charrouf Z. 2021. Effect of seeds roasting time on physicochemical properties, oxidative stability, and antioxidant activity of cactus (Opuntia ficus-indica L.) seed oil. J. Food Process. Preserv. 1, e15747. https://doi.org/10.1111/jfpp.15747
Oumatou J, Zrira S, Petretto GL, Saidi B, Salaris M, Pintore G. 2016. Volatile constituents and polyphenol composition of Opuntia ficus-indica (L.) Mill from Morocco. Rev. Mar. Sci. Agron. Vét. 4 (3), 5-11.
Owon M, Osman M, Ibrahim A, Salama MA, Matthäus B. 2021. Characterization of different parts from Moringa oleifera regarding protein, lipid composition and extractable phenolic compounds. OCL. 28, 45. https://doi.org/10.1051/ocl/2021035
Özcan MM, Al Juhaimi FY. 2011. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus-indica L.) growing in Turkey. Int. J. Food Sci. Nutr. 62 (5), 533-536. https://doi.org/10.3109/09637486.2011.552569 PMid:21391790
Prabakaran M, Lee JH, Ahmad A, Kim SH, Woo KS, Kim MJ, Chung IM. 2018. Effect of storage time and temperature on phenolic compounds of soybean (Glycine max L.) flour. Molecules 23 (9), 2269. https://doi.org/10.3390/molecules23102713 PMid:30347888 PMCid:PMC6222662
Ramadan MF, Mörsel JT. 2003. Oil cactus pear (Opuntia ficus-indica L.). Food Chem. 82 (3), 339-345. https://doi.org/10.1016/S0308-8146(02)00550-2
Ramírez-Moreno E, Cariño-Cortés R, Cruz-Cansino NDS, Delgado-Olivares L, Ariza-Ortega JA, Montañez-Izquierdo VY, Hernández-Herrero MM, Filardo-Kerstupp T. 2017. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils. J. Food Qual. 2017, 1-8. https://doi.org/10.1155/2017/3075907
Salama MA, El Harkaoui S, Nounah I, Sakr H, Abdin M, Owon M, Osman M, Ibrahim A, Charrouf Z, Matthäus B. 2020. Oxidative stability of Opuntia ficus-indica seeds oil blending with Moringa oleifera seeds oil. OCL. 27, 53. https://doi.org/10.1051/ocl/2020045
Salvo F, Galati E, Curto SL, Tripodo M. 2002. Study on the chemical characterization of lipid composition of Opuntia ficus-indica L. seed oil. Riv. Ital. Sostanze Grasse. 79 (11), 395-398.
Silva FA, Borges F, Ferreira MA. 2001. Effects of phenolic propyl esters on the oxidative stability of refined sunflower oil. J. Agric. Food Chem. 49 (8), 3936-3941. https://doi.org/10.1021/jf010193p PMid:11513692
Taoufik F, Zine S, El Hadek M, Idrissi Hassani L, Gharby S, Harhar H, Matthäus B. 2015. Oil content and main constituents of cactus seed oils Opuntia ficus-indica of different origin in Morocco. Mediterranean J. Nutrit. Metabolism. 8 (2), 85-92. https://doi.org/10.3233/MNM-150036
Torres M, Lloret C, Sosa M, Maestri D. 2006. Composition and oxidative stability of soybean oil in mixtures with jojoba oil. Eur. J. Lipid Sci. Technol. 108 (6), 513-520. https://doi.org/10.1002/ejlt.200500282
Xu TT, Li J, Fan YW, Zheng TW, Deng ZY. 2015. Comparison of oxidative stability among edible oils under continuous frying conditions. Int. J. Food Prop. 18 (7), 1478-1490. https://doi.org/10.1080/10942912.2014.913181
Zeghad N, Ahmed E, Belkhiri A, Vander Heyden Y, Demeyer K, 2019. Antioxidant activity of Vitisvinifera, Punicagranatum, Citrus aurantium and Opuntia ficus indica fruits cultivated in Algeria. Heliyon. 5 (4), e01575. https://doi.org/10.1016/j.heliyon.2019.e015
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Bundesministerium für Bildung und Forschung
Grant numbers 01DH17019