Use of molecular methods for the identification of yeast species isolated from fermentations of table olives produced traditionally in Kahramanmaraş

Authors

DOI:

https://doi.org/10.3989/gya.1213222

Keywords:

Fermentation, Molecular identification, Salt, Table olive, Traditional, Yeast

Abstract


In this study, yeast species involved in the naturally fermented green table olive produced in Southern Turkey were investigated. Table olive samples were prepared with regional olive cultivars and traditional methods were employed in the production. Yeasts were isolated from the brines of the samples at the late fermentation stage and identified at the species level by the DNA sequences of the D1/D2 domain of 26S rRNA genes. The D1/D2 domains were amplified by PCR, sequenced and compared to reference sequences deposited in the NCBI database. According to the results, isolated yeasts belonged to the CandidaDebaryomyces, and Rhodotorula genera and salt tolerant species were dominant as the salt content of the brines exceeded 11%. Among the determined species, Candida oleophila was the most dominant one and it was thought that isolated strains of Candida oleophila may be taken into consideration to be used as starter culture in table olive production.

Downloads

Download data is not yet available.

References

Alves M, Goncalves T, Quintas C. 2012. Microbial quality and yeast population dynamics in cracked green table olives’ fermentations. Food Control 23 (2), 363-368.

AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. (Hekrichk, Editor), Vol: 1 and Vol:2, 15th edn, Arlington, Virginia 22201 USA.

Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R. 2012a. Yeasts in table olive processing: Desirable or spoilage microorganisms? Int. J. Food Microbiol. 160 (1), 42-49.

Arroyo-López FN, Romero-Gil V, Bautista-Gallego J. 2012b. Potential benefits of the application of yeast starters in table olive processing. Front Microbiol. 3, 1-4.

Bautista-Gallego J, Rodríguez-Gómez F, Barrio E, Querol A. 2011. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int. J. Food Microbiol. 147 (2), 89-96.

Bleve G, Tufariello M, Durante M, Grieco F, Ramires FA, Mita G, Logrieco AF. 2015. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters. Food Microbiol. 46, 368-382.

Cardinali F, Ferrocino I, Milanović V, Belleggia L, Corvaglia MR, Garofalo C, Foligni R, Mannozzi C, Mozzon M, Cocolin L, Osimani A, Aquilanti L. 2021. Microbial communities and volatile profile of Queijo de Azeitão PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. Food Res Int. 147, 110537.

Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G. 2012. Application of starter cultures to table olive fermentation: An overview on the experimental studies. Frontiers Microbiol. 3, 248.

da Silva GA, Bernardi TL, Schaker PDC, Menegotto M, Valente P. 2012. Rapid yeast DNA extraction by boiling and freeze-thawing without using chemical reagents and DNA purification. Braz. Arch. Biol. Technol. 55 (2), 319-327.

Deak T. 2008. Handbook of Food Spoilage Yeasts. (T. Deak, Ed.) (2nd ed.). Boca Raton: CRC Press.

Erten H, Tanguler H. 2014. Fermente Bitkisel Ürünler. In N. Aran (Ed.), Gıda Biyoteknolojisi 5., pp. 244-279. Ankara, Nobel.

Fadda ME, Mossa V, Pisano MB, Deplano M, Cosentino S. 2004. Occurrence and characterization of yeasts isolated from artisanal Fiore Sardo cheese. Int. J. Food Microbiol. 95 (1), 51-59.

FAO. 2021. Faostat database search results http://www.fao.org (erişim tarihi 24/08/2021)

Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG. 2007. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 24 (4), 346-351.

Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozès N. 2008. Microbial population dynamics during the processing of Arbequina table olives. Food Res. Internat. 41 (7), 738-744.

Kara GN, Özbaş ZY. 2013. Importance of the Natural Yeast Flora in Table Olive Production. Gıda 38 (6), 375-382.https://doi.org/10.5505/gida.2013.08108

Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73 (4), 331-371.

Leventdurur S, Sert-Aydın S, Boyacı-Gunduz P, Agirman B, Ghorbal A, Francesca N Erten H. 2016. Yeast biota of naturally fermented black olives in different brines made from cv. Gemlik grown in various districts of the Cukurova region of Turkey. Yeast 33, 289-301.

Muccilli S, Caggia C, Randazzo CL, Restuccia C. 2011. Yeast dynamics during the fermentation of brined green olives treated in the field with kaolin and Bordeaux mixture to control the olive fruit fly. Int J Food Microbiol. 148 (1), 15-22.

Mujdeci G, Arévalo-Villena M, Ozbas ZY, Briones Pérez A 2018. Yeast Identification During Fermentation of Turkish Gemlik Olives. J Food Sci. 83 (5), 1321-1325.

Nisiotou A, Chorianopoulos N, Nychas GE, Panagou EZ 2010. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. J. Appl. Microbiol. 108, 396-405.

Ozturk I. 2015. Presence, changes and technological properties of yeast species during processing of pastirma, a Turkish dry-cured meat product. Food Control 50, 76-84.

Ozturk I, Sagdic O. 2014. Biodiversity of yeast mycobiota in “sucuk,” a traditional turkish fermented dry sausage: Phenotypic and genotypic identification, functional and technological properties. J. Food Sci. 79 (11), M2315-M2322.

Pereira EL, Ramalhosa E, Borges A, Pereira JA, Baptista P. 2015. Yeast dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol. 46, 582-586.

Porru C, Rodríguez-Gómez F, Benítez-Cabello A, Jiménez-Díaz R, Zara G, Budroni M, Arroyo-López FN 2018. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol. 69, 33-42.

Ruiz-Moyano S, Esperilla A, Hernández A, Benito MJ, Casquete R, Martín-Vertedor D, Pérez-Nevado F. 2019. Application of ISSR-PCR as a rapid method for clustering and typing of yeasts isolated from table olives. LWT. 109, 250-254.

Silva T, Reto M, So, M, Peito A, Peres CM, Peres C, Malcata, FX. 2011. Characterization of yeasts from Portuguese brined olives, with a focus on their potentially probiotic behavior. LWT-Food Sci. Technol. 44 (6), 1349-1354.

Tassou CC, Panagou EZ, Katsaboxakis KZ 2002. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 19 (6), 605-615.

Tofalo R, Perpetuini G, Schirone M, Suzzi G, Corsetti A. 2013. Yeast biota associated to naturally fermented table olives from different Italian cultivars. Int. J. Food Microbiol. 161 (3), 203-208.

Vinicius De Melo Pereira G, De Carvalho Neto DP, Junqueira ACDO, Karp SG, Letti L AJ, Magalhães Júnior AI, Soccol CR 2020. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry. Food Reviews Int. 36 (2), 135-167.

Published

2023-11-24

How to Cite

1.
Ayman S, Gezginc Y. Use of molecular methods for the identification of yeast species isolated from fermentations of table olives produced traditionally in Kahramanmaraş. Grasas aceites [Internet]. 2023Nov.24 [cited 2024Mar.4];74(4):e523. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2081

Issue

Section

Research

Funding data

Kahramanmaraş Sütçü Imam Üniversitesi
Grant numbers 2016-6/25YLS