Impact of different treatments on the antioxidant properties of two market types of peanuts grown in Mexico

Authors

DOI:

https://doi.org/10.3989/gya.0878221

Keywords:

Antioxidant capacity, Peanut processing, Total flavonoids, Total phenolics

Abstract


The effect of roasting, frying, microwave heating, and germination on the antioxidant properties, total phenolics and flavonoids content of two types of peanuts (Valencia and Virginia) grown in Mexico was investigated. The thermal treatments affected the phenolic content and the antioxidant capacity of the two varieties of peanuts differently (by ABTS, DPPH, FRAP and iron chelating activity methods). Germination was the best method to increase the antioxidant activity (up to 157% increase in the Virginia variety) and the contents of compounds with nutraceutical potential in the peanuts (up to 59% increase in total phenolics in the Valencia variety and 700% increase in total flavonoids in the Virginia variety). Germinated peanuts could be used as raw material for the production of functional foods.

Downloads

Download data is not yet available.

References

Ali A, Islam A, Pal TK. 2016. The effect of microwave roasting on the antioxidant properties of the Bangladesh groundnut cultivar. Acta Sci. Pol. Technol. Aliment. 15, 429-438.

AOAC. 1995. Official Method of Analysis of AOAC, 16th ed, AOAC Intl., Washington, DC, USA.

Beltrán-Orozco MC, Martínez-Olguín A, Robles-Ramírez MC. 2020. Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci. Biotechnol. 29, 751-757.

Benzie I, Strain J. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal. Biochem. 239, 70-76.

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci.Technol. 28, 25-30.

Chukwumah Y, Walker L, Vogler B, Verghese M. 2007. Changes in the phytochemical composition and profile of raw, boiled and roasted peanuts. J. Agric. Food Chem. 55, 9266-9273.

Craft BD, Kosinska A, Amarowicz R, Pegg RB. 2010. Antioxidant properties of extracts obtained from raw, dry-roasted and oil-roasted US peanuts of commercial importance. Plant Foods Hum. Nutr. 65, 311-318.

Dueñas M, Hernández T, Estrella I, Fernández D. 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 117, 599-607.

Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. 2008. Iron quelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr. J. Biotechnol. 7, 3188-3192.

Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Koslowska H, Vidal-Valverde C. 2008. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem. 111, 622-630.

Ferreira CD, Ziegler V, Bubolz VK, Da Silva J, Cardozo MMC, Elias MC, De Oliveira M. 2016. Effects of the roasting process over the content of secondary metabolites from peanut grains (Arachis hypogaea. L) with different colorations of testa. J. Food Qual., 39 685-694.

Geng J, Li J, Zhu F, Chen X, Du B, Tian H, Li, J. (2021). Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. e13777

Khang D, Dung T, Elzaawely A, Xuan T. 2016. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods 5, 27.

Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. Sci. World J. ID 162750, 1-16.

Kumar RR, Upadhyay R, Niwas MH. 2017. Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. J. Food Sci. Technol. 54, 2145-2155.

Mahatma MK, Thawait LK, Bishi SK, Khatediya N, Rathnakumar AL, Lalwani HB, Misra JB. 2016. Nutritional composition and antioxidant activity of Spanish and Virginia groundnuts (Arachis hypogaea L.): a comparative study. J. Food Sci.Technol. 53, 2279-2286.

Mora-Escobedo R, Hernández-Luna P, Joaquín-Torres I, Ortiz-Moreno A, Robles- Ramírez MC. 2015. Physicochemical properties and fatty acid profile of eight peanut varieties grown in Mexico. CyTA-J. Food 13, 300-304.

Ndakidemi PA, Dakora FD. 2003. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 30, 729-745.

Phan-Thien K.-Y, Wright GC, Tillman BL, Lee NA. 2014. Peanut antioxidants: Part 1. Genotypic variation and genotype-by-environment interaction in antioxidant capacity of raw kernels. LWT-Food Sci. Technol. 57, 306-311.

Prakash M, Basavaraj BV, Chidambara MKN. 2019. Biological functions of epicatechin: plant cell to human cell health. J. Funct. Foods 52, 14-24.

Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290-4302.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237.

Robles-Ramírez MC, Almazán-Rodríguez RL, Mora-Escobedo R. 2014. Nutraceutical potential of peanut seeds, in Rosalva Mora Escobedo (Ed.) Functional food components in seeds, Nova Science Publishers Inc., New York, pp. 93-114, (ISBN 978-1-62808-489-4).

Rosales-Martínez P, Arellano-Cárdenas S, Dorantes-Álvarez L, García-Ochoa F, López-Cortez MS. 2014. Comparison between antioxidant activities of phenolic extracts from Mexican peanuts, peanuts skins, nuts and pistachios. J. Mex. Chem. Soc. 58, 185-193.

Serafini F, Peluso I. 2016. Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 22 6701- 6715.

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299, 152-178.

Thummakomma K, Prashanthi M, Rajeswari K. 2018. Evaluation of Antioxidant Activity and Bioactive Compounds on Domestic Cooking Method. Int. J. Curr. Microbiol. Appl. Sci. 7, 4090-4097.

Vauzour D, Rodríguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. 2010. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2, 1106-1131.

Win M M, Abdul-Hamid A, Baharin B S, Anwar F, Saari N. 2011. Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. Eur Food Res Technol. 233 599-608.

Yang Q-Q, Cheng L, Long Z-Y, Li H-B, Gunaratne A, Gan R-Y, Gan R-Y, Corke H. 2019. Comparison of the phenolic profiles of soaked and germinated peanut cultivars via UPLC-QTOF-MS. Antioxidants 8, 1-12.

Published

2023-11-24

How to Cite

1.
Robles-Ramírez M, Viramontes-Bocanegra R, Mora-Escobedo R, Ortega-Robles E, Beltrán-Orozco M. Impact of different treatments on the antioxidant properties of two market types of peanuts grown in Mexico. Grasas aceites [Internet]. 2023Nov.24 [cited 2024Feb.27];74(4):e527. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2082

Issue

Section

Research

Funding data

Instituto Politécnico Nacional
Grant numbers 20171684