Effect of different extraction methods on saffron antioxidant activity, total phenolic and crocin contents and the protective effect of saffron extract on the oxidative stability of common vegetable oils





Antioxidant activity, Microwave-assisted extraction, Oxidative stability, Saffron, Ultrasound-assisted extraction


Saffron consists of bioactive compounds with health-promoting properties and is mainly used in medicine, flavoring and coloring. In this study, we aimed to investigate the effect of extraction methods on the antioxidant activity of saffron (Crocus sativus L.) extracts (SE) and to evaluate the antioxidant performance of SE in vegetable oils. Saffron stigmas were extracted in water, ethanol, methanol, and their combinations using maceration extraction (ME), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and the combination of UAE with MAE. The results showed that the sample extracted by methanol/water (50:50) using the combination of UAE with MAE methods had the highest amount of total phenolic content (31.56 mg/g GAE) and antioxidant activity (83.24% inhibition). The extract with the highest antioxidant activity was freeze-dried before incorporation into oil samples. Freeze-dried SE contained trans-crocin-4 and trans-crocin-3 (most abundant constituents), kaempferol, and picrocrocin. Moreover, the addition of SE at 1000 ppm resulted in a significant increase in the oxidative stability of canola (CAO), sunflower (SO), and corn oil (COO).


Download data is not yet available.


Ahmadian-Kouchaksaraie Z, Niazmand R. 2017. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. J. Superc. Fluids 121, 19-31. https://doi.org/10.1016/j.supflu.2016.11.008

Aktypis A, Christodoulou ED, Manolopoulou E, Georgala A, Daferera D, Polysiou M. 2018. Fresh ovine cheese supplemented with saffron (Crocus sativus L.): Impact on microbiological, physicochemical, antioxidant, color and sensory characteristics during storage. Small Ruminant Res. 167, 32-38. https://doi.org/10.1016/j.smallrumres.2018.07.016

Altemimi A, Watson DG, Choudhary R, Dasari MR, Lightfoot DA. 2016. Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PloS One 11 (2), e0148758. https://doi.org/10.1371/journal.pone.0148758 PMid:26885655 PMCid:PMC4757553

AOCS. 1988. American oil chemist's society , Official and tentative methods (Vol. 1).

AOCS. 1998. Official Methods and Recommended Practices of the American Oil Chemists' Society (5th Ed.). AOCS Press.

Armellini R, Peinado I, Pittia P, Scampicchio M, Heredia A, Andres A. 2018. Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem. 254, 55-63. https://doi.org/10.1016/j.foodchem.2018.01.174 PMid:29548471

Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N. 2015. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. South Afr. J. Botan. 99, 80-87. https://doi.org/10.1016/j.sajb.2015.03.194

Bandonien D, Pukalskas A, Venskutonis PR, Gruzdien D. 2000. Preliminary screening of antioxidant activity of some plant extracts in rapeseed oil. Food Res. Int. 33 (9), 785-791. https://doi.org/10.1016/S0963-9969(00)00084-3

Bhatt ID, Dauthal P, Rawat, Gaira KS, Jugran A, Rawal RS, Dhar U. 2012. Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Sci. Horticult., 136, 61-68. https://doi.org/10.1016/j.scienta.2011.12.032

Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL. 2006. Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J. Agric. Food Chem. 54 (3), 973-979. https://doi.org/10.1021/jf052297w PMid:16448211

Carrillo W, Carpio C, Morales D, Vilcacundo E, Alvarez M, Silva M. 2017. Content of fatty acids in corn (Zea mays L.) oil from Ecuador. As. J. Pharm. Clinical Res. 10, 150-153. https://doi.org/10.22159/ajpcr.2017.v10i8.18786

Cossignani L, Urbani E, Simonetti MS, Maurizi A, Chiesi C, Blasi F. 2014. Characterisation of secondary metabolites in saffron from central Italy (Cascia, Umbria). Food Chem. 143, 446-451. https://doi.org/10.1016/j.foodchem.2013.08.020 PMid:24054265

Deng J, Xu Z, Xiang C, Liu J, Zhou L, Li T, Yang Z, Ding C. 2017. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrason. Sonochem. 37, 328-334. https://doi.org/10.1016/j.ultsonch.2017.01.023 PMid:28427640

Dorta E, Lobo MG, Gonzalez M. 2012. Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. J.Food Sci. 77 (1), C80-C88. https://doi.org/10.1111/j.1750-3841.2011.02477.x PMid:22132766

Esmaeilzadeh Kenari R, Mohsenzadeh F, Amiri ZR. 2014. Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound-assisted extraction methods. Food Sci. Nutrit. 2 (4), 426-435. https://doi.org/10.1002/fsn3.118 PMid:25473500 PMCid:PMC4221841

Garavand F, Rahaee S, Vahedikia N, Jafari SM. 2019. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci. Technol. 89, 26-44. https://doi.org/10.1016/j.tifs.2019.05.005

Hashemi Gahruie H, Parastouei K Mokhtarian M, Rostami H, Niakousari M, Mohsenpour Z. 2020. Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. J. App. Res. Med. Arom. Plants 19, 100264. https://doi.org/10.1016/j.jarmap.2020.100264

Heydari S, Haghayegh GH. 2014. Extraction and microextraction techniques for the determination of compounds from saffron. Can. Chem. Trans. 2, 221-247. https://doi.org/10.13179/canchemtrans.2014.02.02.0097

ISO/TS 3632-1/2. 2003. Technical Specification. Crocus sativus L. Saffron (ISO ed.). Geneva.

Jadouali SM, Atifi H, Mamouni R, Majourhat K, Bouzoubaâ Z, Laknifli A, Faouzi A. 2019. Chemical characterization and antioxidant compounds of flower parts of Moroccan crocus sativus L. J. Saudi Soc. Agric. Sci. 18 (4), 476-480. https://doi.org/10.1016/j.jssas.2018.03.007

Jalili F, Jafari SM, Emam-Djomeh Z, Malekjani N, Farzaneh V. 2018. Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Anal. Methods 11 (2), 598-612. https://doi.org/10.1007/s12161-017-1030-z

Kabiri M, Rezadoost H, Ghassempour A. 2017. A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin. LWT- Food Sci. Technol. 84, 1-9, https://doi.org/10.1016/j.lwt.2017.05.033

Karimi E, Oskoueian E, Hendra R, Jaafar HZE. 2010. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15 (9), 6244-6256. https://doi.org/10.3390/molecules15096244 PMid:20877220 PMCid:PMC6257777

Kozłowska M, Gruczyńska E. 2018. Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chem. Papers 72 (10), 2607-2615. https://doi.org/10.1007/s11696-018-0516-5 PMid:30147227 PMCid:PMC6096694

Kyriakoudi A, Chrysanthou A, Mantzouridou F, Tsimidou MZ. 2012. Revisiting extraction of bioactive apocarotenoids from Crocus sativus L. dry stigmas (saffron). Anal. Chim. Acta 755, 77-85. https://doi.org/10.1016/j.aca.2012.10.016 PMid:23146397

Lahmass I, Lamkami T, Delporte C, Sikdar S, Van Antwerpen P, Saalaoui E, Megalizzi V. 2017. The waste of saffron crop, a cheap source of bioactive compounds. J. Funct. Foods 35, 341-351. https://doi.org/10.1016/j.jff.2017.05.057

Lambrianidou A, Koutsougianni F, Papapostolou I, Dimas K 2021. Recent Advances on the Anticancer Properties of Saffron (Crocus sativus L.) and Its Major Constituents. Molecules 26 (1). https://doi.org/10.3390/molecules26010086 PMid:33375488 PMCid:PMC7794691

Larbat R, Paris C, Le Bot J, Adamowicz S. 2014. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. Plant Sci. 224, 62-73. https://doi.org/10.1016/j.plantsci.2014.04.010 PMid:24908507

Lech K, Witowska-Jarosz J, Jarosz M. 2009. Saffron yellow: characterization of carotenoids by high performance liquid chromatography with electrospray mass spectrometric detection. J. Mass Spectrom 44 (12), 1661-1667. https://doi.org/10.1002/jms.1631 PMid:19821449

Manouchehri R, Saharkhiz MJ, Karami A, Niakousari M. 2018. Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustain. Chem. Pharm. 8, 76-81. https://doi.org/10.1016/j.scp.2018.03.002

Merrill LI, Pike OA, Ogden LV, Dunn ML. 2008. Oxidative Stability of Conventional and High-Oleic Vegetable Oils with Added Antioxidants. J. Am. Oil Chem. Soc. 85 (8), 771-776. https://doi.org/10.1007/s11746-008-1256-4

Mohamed F, Salama HH, El-Sayed SM, El-Sayed HS, Zahran HA. 2018. Utilization of natural antimicrobial and antioxidant of Moringa oleifera leaves extract in manufacture of cream cheese. J. Biol. Sci. 18 (2), 92-106. https://doi.org/10.3923/jbs.2018.92.106

Muzaffar S, Rather SA, Khan KZ. 2016. In vitro bactericidal and fungicidal activities of various extracts of saffron (Crocus sativus L.) stigmas from Jammu & Kashmir, India. Cogent Food Agric. 2 (1), 1158999. https://doi.org/10.1080/23311932.2016.1158999

Najafi Z, Kahn CJF, Bildik F, Arab-Tehrany E, Şahin-Yeşilçubuk N. 2021. Pullulan films loading saffron extract encapsulated in nanoliposomes; preparation and characterization. International J. Biol. Macromol. 188, 62-71. https://doi.org/10.1016/j.ijbiomac.2021.07.175 PMid:34343589

Oliveira AS, Ribeiro-Santos R, Ramos F, Castilho MC, Sanches-Silva A. 2018. Uhplc-dad multi-method for determination of phenolics in aromatic plants. Food Anal. Methods 11 (2), 440-450. https://doi.org/10.1007/s12161-017-1015-y

Ozkan K, Bayram Y, Karasu S, Karadag A, Sagdic O. 2021. Extraction of bioactive compounds from saffron species C. M. B. T.-S. Galanakis (ed.); Academic Press. Chapter 3 pp. 99-141. https://doi.org/10.1016/B978-0-12-821219-6.00003-8

Pourzaki A, Mirzaee H, Hemmati Kakhki A. 2013. Using pulsed electric field for improvement of components extraction of saffron (crocus sativus) stigma and its pomace. J. Food Process. Preservat. 37 (5), 1008-1013. https://doi.org/10.1111/j.1745-4549.2012.00749.x

Sarfarazi M, Jafari SM, Rajabzadeh G. 2015. Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal. Methods 8 (9), 2273-2285. https://doi.org/10.1007/s12161-014-9995-3

Sarfarazi M, Jafari SM, Rajabzadeh G, Feizi J. 2019. Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water. LWT, 114, 108428. https://doi.org/10.1016/j.lwt.2019.108428

Sarfarazi M, Jafari S M, Rajabzadeh G, Galanakis CM. 2020. Evaluation of microwave-assisted extraction technology for separation of bioactive components of saffron (Crocus sativus L.). Ind. Crops Prod. 145, 111978. https://doi.org/10.1016/j.indcrop.2019.111978

Socaci SA, Fărcaş AC, Diaconeasa ZM, Vodnar DC, Rusu B, Tofană M. 2018. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers' spent grain. J. Cereal Sci. 80, 180-187. https://doi.org/10.1016/j.jcs.2018.03.006

Zahran HA, Tawfeuk HZ. 2019. Physicochemical properties of new peanut (Arachis hypogaea L.) varieties. OCL, 26, 19. https://doi.org/10.1051/ocl/2019018

Zhou K, Yu L. 2004. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT-Food Sci. Technol. 37 (7), 717-721. https://doi.org/10.1016/j.lwt.2004.02.008



How to Cite

Najafi Z, Zahran H, Şahin Yeşilçubuk N, Gürbüz H. Effect of different extraction methods on saffron antioxidant activity, total phenolic and crocin contents and the protective effect of saffron extract on the oxidative stability of common vegetable oils. grasasaceites [Internet]. 2022Dec.30 [cited 2023Apr.1];73(4):e480. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1960




Funding data

Istanbul Teknik Üniversitesi
Grant numbers 41582