Structural characterization by Nuclear Magnetic Resonance of ozonized triolein
DOI:
https://doi.org/10.3989/gya.2008.v59.i3.519Keywords:
Aldehydes, NMR, Ozonation, Ozone, Ozonides, TrioleinAbstract
In the present study ozonized triolein with 739 mmolequiv/ kg peroxide index is characterized by NMR.The triolein and ozonized triolein show very similar 1H NMR spectra except for the resonances at δ 9.74 ppm, which correspond to aldehydic protons and δ 5.14 ppm (ozonides methylic protons). Other new signal assignments are based on the connectivities provided by the proton scalar coupling constants δ 2.41 ppm (methylenic group allylic to aldehydic protons and ozonides methynic protons) and δ 1.67 ppm (methylenic protons in position with respect to ozonides methylic protons). From the 13C and 1H-13C spectrum of the ozonized triolein, the presence of ozonides was confirmed by the signals δ 104.2 and 104.3 ppm, respectively. Other new signals in δ 43.9 ppm confirm the presence of methylenic carbon ozonides. From the structural elucidation of ozonated triglycerides, relevant chemical information about ozonated vegetable oil can be found .
Downloads
References
British Pharmacopeia. 2000b. Peroxide Value, Appendix XF, 1A, 1B.
Criegee R. 1975. Mechanism of Ozonolisis. 14 Ed., Angewandte Chemie Int. England.
Croasmun W.R, Carlson M.K. 1987. Two-Dimensional NMR Spectroscopy. Applications for Chemists and Biochemists. VCH Publishers, Inc., New York, USA.
Díaz M, Alvarez I, Vélez H, Hernández F, Ledea O, Molerio J. 1997. 1H-NMR Studies of the Ozonation of Methyl Oleate. Bol. Soc. Chil. Quím. 42, 349-353.
Díaz M, Lezcano I, Molerio J, Hernández F. 2001. Spectroscopic characterization of ozonides with biological activity. Ozone Sci. Eng. 23, 35-40. doi:10.1080/01919510108961986
Díaz M, Hernández F, Ledea O, Molerio J, Sazatornil J. 2003. 1H NMR study of methyl linoleate ozonation. Ozone Sci. Eng. 25 (2), 121-126. doi:10.1080/713610666
Díaz M, Núñez N, Quincose D, Díaz W, Hernández F. 2005a. Study of Three Sistems of Ozonized Cocunut Oil. Ozone Sci. Eng. 27 (2), 1-5.
Díaz M, José Gavin, Ledea O, Hernández F, Alaiz M, Garcés R. 2005b. Spectroscopic characterization of ozonated sunflower oil. Ozone Sci. Eng., 27 (3), 247-253. doi:10.1080/01919510590945822
Freeman B.A, Sharman M.C, Mudd J.B. 1979. Reaction of Ozone with Phospholipid Vesicles and Human Erythrocyte Grosts. Arch. Biochem. Biophys. 197, 264-272. doi:10.1016/0003-9861(79)90244-3 PMid:575611
Freeman R. 1988. A Handbook of Nuclear Magnetic Resonance. Longman Group UK Limited, London.
Giovanna V. 1998. Use of 13C Nuclear Magnetic Resonance Spectroscopy to Study the Triglyceride Fraction of Vegetable Oils. Recent Res. Devel. In Oil Chem. 2, 189-202.
Lie Ken Jie M.S.F, Mustafa J. 1997. High-Resolution Nuclear Magnetic Resonance Spectroscopy –Application to Fatty Acids and Triacylglycerols. Lipids 32 (10), 1019-1034. doi:10.1007/s11745-997-0132-y PMid:9358427
Mannina L, Luchinat C, Emanuele M.C, Segre A. 1999. Acyl Positional Distribution of Glycerol Tri-Esters in Vegetable Oils: a 13C NMR Study. Chem. Phys. Lipids 103, 47-55. doi:10.1016/S0009-3084(99)00092-4
Miura T, Suzuki S, Sakurai S, Matsumoto A, Shinriki N. 2001. Structure Elucidation of Ozonated Olive Oil. Proceedings of the 15th World Congress London. Medical Therapy Conference, 72-76.
Pryor W.A, Das B, Church D.F. 1991. The Ozonation Unsaturated Fatty Acids: Aldehydes and Hydrogen Peroxide as Products and Possible Mediators of Ozone Toxicity. Chem. Res. Toxicol. 4, 341-348. doi:10.1021/tx00021a014 PMid:1912318
Pryor W.A, Squadrito G.L, and Friedman M. 1995. The Cascade Mechanism to Explain Ozone Toxicity. The Role of Lipid Ozonation Products. Free Radic. Biol. Med. 19(6), 935-941. doi:10.1016/0891-5849(95)02033-7 PMid:8582671
Rietjens I.M.C.M, Lemmink H.H, Alink G.M, Van Bladeren P.J. 1987. The Role of Glutathione and Glutathione Stransferases in Fatty Acid Ozonide Detoxification. Chem. Biol. Interactions 62, 3-14. doi:10.1016/0009-2797(87)90075-5 PMid:3581285
Vajda O.I, Saenz T.W. 1976, Química de los Alimentos, ch.1, Editorial Científico Técnico, La Habana, Cuba.
Vlahov G. 1996 The Structure of Triglycerides of Monovarietal Olive Oils: A 13C Comparative Study. Fett/Lipid 98, 203-205.
Vlahov G. 1998. Use of 13C Nuclear Magnetic Resonance Spectroscopy to Study the Triglyceride Fraction of Vegetable Oils. Recent Res. Devel. In Oil Chem. 2, 189-202.
Vlahov G. 1999. Application of NMR to the Study of Olive Oils. Progress in Nuclear Magnetic Resonance Spectroscopy 35, 341-357. doi:10.1016/S0079-6565(99)00015-1
Wollenberg K.F. 1990. Quantitative High-Resolution 13C Nuclear Magnetic Resonance of the Olefinic and Carbonyl Carbons of Edible Vegetable Oils. J. Am. Oil. Chem. Soc. 67, 487-494. doi:10.1007/BF02540753
Woodbury S.E, Evershed R.P, Rossell J.B. 1998. ä 13C Analyses of Vegetable Oil Fatty Acid Components, Determined by Gas Chromatography-Combustion- Isotope Ratio Mass Spectrometry, After Saponification or Regiospecific Hydrolysis. J. Chromatogr. A. 805, 249-257. doi:10.1016/S0021-9673(97)01304-6 PMid:9618921
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.