Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils


  • Sebastián Oddone Instituto de Tecnología, Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa
  • Mariano Grasselli Universidad Nacional de Quilmes Roque Sáenz Peña
  • Anahí Cuellas Universidad Nacional de Quilmes Roque Sáenz Peña



Bioreactor, Immobilization, Lipase, Modeling, Oils, Simulation


Advances in the design of a bioreactor in the fats and oils industry have permitted the hydrolysis of triglycerides in mild conditions and improved productivity while avoiding the formation of unwanted byproducts. The present work develops a mathematical model that describes the hydrolytic activity of a tubular reactor with immobilized lipases for the production of glycerol and fatty acids from the oil trade. Runge Kutta’s numerical method of high order has been applied, considering that there is no accumulation of the substratum in the surface of the membrane, where the enzyme is. At the same time, different equations based on the kinetic model of Michaelis Mentens and the Ping-Pong bi-bi mechanism were examined. Experimental data in discontinuous systems are the basis for the development of the quantitative mathematical model that was used to simulate the process computationally. The obtained results allow for optimizing both the operative variables and the economic aspects of industrial processes.


Download data is not yet available.


Alonso N, Lopez-Gallego F, Betancor L, Hidalgo A, Mateo C, Guisan JM. 2005. Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. J. Mol. Catal B: Enzym. 35, 57-61. doi:10.1016/j.molcatb.2005.05.007 Al-Zuhair S, Ramachandran KB, Hasan M. 2008. Effect of enzyme molecules covering of oil-water interfacial area on the kinetic of oil hydrolysis. Chemical Engineering Journal. 139, 540-548. doi:10.1016/j.cej.2007.08.030 Al-Zuhair S, Dowaidar A, Kamal H. 2009. Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochemical Engineering Journal. 44, 256-262. doi:10.1016/j.bej.2009.01.003 Arroyo M, Moreno JM, Sinisterra JV. 1993. Immobilization, Stabilization of lipase from Candida rugosa on different hydroxilic supports. J. Mol. Catal. 83, 261-71. doi:10.1016/0304-5102(93)87024-3 Arroyo M, Moreno JM, Sinisterra JV. 1995. Alteration of the activity and selectivity of immobilized lipases by the effect of the amount of water in the organic medium. Journal of Molecular Catalysis A: Chemical. 97, 195-201 doi:10.1016/1381-1169(94)00082-4 Arroyo M. 1998. Inmovilización de enzimas: Fundamentos, Métodos y Aplicaciones. Ars Pharmaceutica. 39, 23-39. Balcào V, Paiva A, Malcata X. 1996. Bioreactors with immobilized lipases: State of the art. Enzyme and Microbial Technology. 18,392-416. doi:10.1016/0141-0229(95)00125-5 Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Mateo C. 2006. Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol. 39, 877-82. doi:10.1016/j.enzmictec.2006.01.014 Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254. doi:10.1016/0003-2697(76)90527-3 Cleland WW. 1963. Kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochim. Biophys. Acta. 67, 104-137. doi:10.1016/0006-3002(63)91800-6 Cuellas A. 2005. Aspectos generales, en Estudio de un reactor con enzimas inmovilizadas para el procesamiento de suero de quesería. Tesis de magíster. Universidad Nacional del Litoral. Santa Fe, Argentina. 12-28. Chew YH, Chua LS, Cheng KK, Sarmidi MR, Aziz RA, Lee Ch. 2008. Kinetic study on the hydrolysis of palm olein using immobilized lipase. Biochemical Engineering Journal. 39, 516-520. doi:10.1016/j.bej.2007.10.019 De Oliveira P, Alves G, de Castro H. 2002. Immobilization studies and catalytic properties of microbial lipase onto styrene-divinylbenxene copolymer. Biochemical Engineering Journal. 5, 36-71. Fernandez-Lorente G, Palomo J, Mateo C, Munilla R, OrtizC, Cabrera Z, Guisán J, Fernandez-Lafuente R. 2006. Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents Leads to Improved Performance. Biomacromolecules. 7, 2610-2615. doi:10.1021/bm060408+ PMid:16961324 Ferreira LM, Rocha JM, Andrade ME, Gil MH. 1998. Preparation and characterization of polyethylene based graft copolymers, applications in the immobilization of enzymes. Radiat. Phys. Chera. 52, 207-212. doi:10.1016/S0969-806X(98)00141-8 Garcia HS, Malcata FX, Hill CG, Amundson CH. 1992. Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat. Enzyme Microb Technol. 14, 535-45. doi:10.1016/0141-0229(92)90124-7 Gray C, Narang J, Barker S. 1990. Immobilization of lipase from Candida cylindraceae and its use in the synthesis of menthol esters by transesterification. Enzyme and Microbial Technology. 12, 800-7. doi:10.1016/0141-0229(90)90155-J H-Kittikun A, Kaewthong W, Cheirsilp B. 2008. Continuous production of monoacylglycerols from palm olein in packed-bed reactor with immobilized lipase PS. Biochemical Engineering Journal. 40, 116-120. doi:10.1016/j.bej.2007.11.023 Hilal N, Kochkodan V, Nigmatullin R, Goncharuk V, Al-Khatib. 2006. Lipase-immobilized biocatalytic membranes for enzymatic esterification: Comparison of various approaches to membrane preparation. Journal of Membrane Science. 268, 198-207 doi:10.1016/j.memsci.2005.06.039 Illanes A, Álvarez L, Álvaro G. 2008. Chemoselective transesterification of wood steroles by lipases. Rev. Colomb. Biotecnol. 10, 17-35. Jaeger K-E, Reetz MT. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396-403. doi:10.1016/S0167-7799(98)01195-0 Jaeger K-E, Eggert T. 2002. Lipases for biotechnology. Protein Technologies and Commercial Enzymes. 390-397. Jackson MA, King JW. 1997. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 74, 103-106. doi:10.1007/s11746-997-0152-7 Laudani ChG, Habulin M, Kneza Z, Della Porta, Reverchon E. 2007. Immobilized lipase mediated longchain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. Journal of Supercritical Fluids. 41, 74-81 doi:10.1016/j.supflu.2006.08.017 Lowry R, Tinsley I. 1976. Rapid colorimetric determination of free fatty acids. Journal of the American Oils Chemists Society. 53, 470-472. doi:10.1007/BF02636814 PMid:956589 Malcata FX, Reyes HR, Garcia HS, Hill CG, Amundson CH. 1990. Immobilized Lipase Reactors for Modification of Fats and Oils- A Review. J. Am. Oil Chem. Soc. 67, 890-910. doi:10.1007/BF02541845 Malcata FX, Reyes H, García H, Hill CG. Jr., Amundson CH. 1992. Kinetics and mechanisms of reactions catalysed by immobilized lipases. Enzyme and Microbial Technology. 14, 426-446. doi:10.1016/0141-0229(92)90135-B Malcata FX, Garcia HS, Hill CG, Amundson CH. 1992. Hydrolysis of butteroil by immobilized lipase using a hollow-fiber reactor: part I. Lipase adsorption studies. Biotechnol Bioeng. 39, 647-657. doi:10.1002/bit.260390609 PMid:18600994 Malcata FX, Hill CG. Jr., Amundson CH. 1992. Hydrolysis of butteroil by immobilized lipase using a hollowfiber reactor. Part II. Uniresponse kinetic studies. Biotechnol. Bioeng. 39, 984-1001. doi:10.1002/bit.260391003 PMid:18600898 Malcata FX, Hill CG. Jr., Amundson C.H. 1992. Hydrolysis of butteroil by immobilised lipase using a hollowfibre reactor. Part III. Multiresponse kinetic studies. Biotechnol. Bioeng. 39, 1002-1012. doi:10.1002/bit.260391004 PMid:18600899 Maroto B, Camusso C, Zaritzky N. 2001. Estudio cinético de la reacción de hidrólisis de lecitina de soja pura en polvo con fosfolipasa A2 inmovilizada. Grasas y Aceites. 52, 33-37. Mateo M, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology. 40, 1451-1463. doi:10.1016/j.enzmictec.2007.01.018 Migneault I. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 37, 790-802. PMid:15560135 Moreno Safra N, Perea Villamil A. 2008. Producción de lípidos estructurados por transesterificación enzimática del aceite de soja y aceite de palmiste en reactor de lecho empacado. Grasas y Aceites. 59, 337-345. Nardini M, Lang D, Liebeton K, Jaeger K, Dijkstra B. 2000. Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family L1 of bacterial lipases. Journal of Biological Chemistry. 275, 31219-31225. doi:10.1074/jbc.M003903200 PMid:10893416 Paiva A, Balcao V, Malcata FX. 2000. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology. 27, 187-204 doi:10.1016/S0141-0229(00)00206-4 Ramachandra M, Bhat J, y Muniswaran P. 2002. Hydrolysis of Oils by Using Immobilized Lipase Enzyme: A Review. Biotechnol. Bioprocess Eng. 7, 57-66. doi:10.1007/BF02935881 Segel IH. 1993. Enzyme kinetics - behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York, U.S.A. Wiley. Shamel M, Ramachandran KB, Hasan M, Al-Zuhair S. 2007. Hydrolysis of palm and olive oils by immobilized lipase using hollow fiber reactor. Biochemical Engineering Journal. 34, 228-235. doi:10.1016/j.bej.2006.12.007 Shmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. 2001. Industrial biocatalysis today and tomorrow. Nature 409, 258-268. doi:10.1038/35051736 PMid:11196655 Svendsen A. 2000. Lipase protein engineering. Biochim Biophys Act. 1543, 223-238. PMid:11150608 Torres CF, Moeljadi M, Hill Jr. CG. 2003. Lipase-catalyzed ethanolysis of fish oils: multi-response kinetics. Biotechnol. Bioeng. 83, 274-281. doi:10.1002/bit.10667 PMid:12783483 Torres CF, Toré AM, Fornari T, Señoráns JF, Reglero G. 2007. Ethanolysis of a waste material from olive oil distillation catalyzed by three different commercial lipases: A kinetic study. Biochemical Engineering Journal. 34, 165-171. doi:10.1016/j.bej.2006.11.027




How to Cite

Oddone S, Grasselli M, Cuellas A. Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils. grasasaceites [Internet]. 2010Jun.30 [cited 2021Dec.4];61(2):175-82. Available from: