Propiedades físicas y químicas de los estólidos

Autores/as

  • Terry A. Isbell United States Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research

DOI:

https://doi.org/10.3989/gya/010810

Palabras clave:

Ácido oleico, Lesquerella, Propiedades físicas, Ricino, Síntesis

Resumen


Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT) de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las muestras. Estas propiedades contrastan con las de los estólidos de ácido lesquerólico y ricinoleico, que poseen puntos críticos de fluidez mucho más bajos (de -36 a -54). Los estólidos derivados mediante la condensación de ácido oleico con otros ácidos grasos por catálisis ácida pueden realizarse con buen rendimiento y presentan un rango bastante amplio de propiedades físicas. A este respecto son de bastante interés los estólidos de ácido oleico esterificados con ácidos grasos saturados los cuales presentan tanto buen comportamiento a bajas temperaturas (puntos de fluidez crítica de -5º a -39ºC) como buena estabilidad oxidativa. Los estólidos de los ácidos grasos del aceite de prado (Limnanthes alba) no presentan buenas propiedades de lubricación a baja temperatura pero su uso está muy extendido en cosmética, donde muestran buenas propiedades como agente hidratante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aitzetmuller K, Xin Y, Werner G, Margaretha G. 1992. High performance liquid chromatographic investigations of stillingia oil. J. Chromr. 603, 165-173. doi:10.1016/0021-9673(92)85358-Z

Awang R, Azizan AB, Ahmad S, Ahmad N, Yunus WNZW. 2007a. Characterization of estolides from dihydroxystearic acid. J. Oil Palm Res. 19,350-355.

Awang R, Azizan AB, Ahmad S, Yunus WNZW, Ahmad N. 2007b. Palm-Based estolide as an ingredient in shampoo: A preliminary study. J. Oil Palm Res. 19, 416-420.

Biresaw G, Cermak SC, Isbell T A. 2007. Film-forming properties of estolides. Tribology Letters, 27, 69-78. doi:10.1007/s11249-007-9207-z

Cermak SC, Isbell TA. 2001. Synthesis of estolides from oleic and saturated fatty acids. J. Am. Oil Chem. Soc. 78, 557-565. doi:10.1007/s11746-001-0304-1

Cermak SC, Isbell TA. 2002. Physical properties of saturated estolides and their 2-ethylhexyl esters. Ind. Crops and Prod. 16, 119-127. doi:10.1016/S0926-6690(02)00034-1

Cermak SC, Isbell TA. 2003a. Synthesis and physical properties of estolide-based functional fluids. Ind. Crops and Prod. 18, 183-196. doi:10.1016/S0926-6690(03)00061-X

Cermak SC, Isbell TA. 2003b. Improved oxidative stability of estolide esters. Ind. Crops and Prod. 18, 223-230. doi:10.1016/S0926-6690(03)00062-1

Cermak SC, Isbell TA. 2004a. Synthesis and Physical Properties of Cuphea-Oleic Estolides and Esters. J. Am. Oil Chem. Soc. 81, 297-303. doi:10.1007/s11746-004-0899-2

Cermak, SC, Isbell TA. 2004b. Estolides-The next biobased functional fluid. Inform 15, 515-517.

Cermak SC, Brandon KB, Isbell TA. 2006. Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind. Crops and Prod. 23, 54-64. doi:10.1016/j.indcrop.2005.04.001

Cermak SC, Skender AL, Deppe AB, Isbell TA. 2007. Synthesis and physical properties of tallow-oleic estolide 2-ethylhexyl esters. J. Am. Oil Chem. Soc. 84, 449-456. doi:10.1007/s11746-007-1052-6

Cermak, SC, Biresaw G, Isbell TA. 2008. Comparison of a new Estolide oxidative stability package. J. Am. Oil Chem. Soc. 85, 879-885. doi:10.1007/s11746-008-1265-3

Cermak SC, Isbell TA. 2009. Synthesis and physical properties of mono-estolides with varying chain lengths. Ind. Crops and Prod. 29, 205-213. doi:10.1016/j.indcrop.2008.05.001

Erciyes AT, Dandik L, Kabasakal OS. 1991. The kinetics of the esterification reaction between castor oil and oleic acid. J. Am. Oil Chem. Soc. 68, 639-641. doi:10.1007/BF02662283

Erdem-Senatalar A, Erencek E, Tüter M, Erciyes AT. 1994. Effect of Lewis acid catalysts on the esterification kinetics of castor oil with oleic acid. J. Am. Oil Chem. Soc. 71, 1035-1037. doi:10.1007/BF02542275

Erdem-Senatalar A, Erencek E, Erciyes AT. 1995. Mechanism and Kinetics of the COCl2-catalyzed esterification reaction of castor oil with oleic acid. J. Am. Oil Chem. Soc. 72, 891-894. doi:10.1007/BF02542066

Erhan SM, Kleiman R, Isbell TA. 1993. Estolides from meadowfoam oil fatty acids and other monounsaturated fatty acids. J. Am. Oil Chem. Soc. 70, 461-465. doi:10.1007/BF02542576

Erhan SM, Isbell TA. 1997. Estolide production with modified clay catalysts and process conditions. J. Am. Oil Chem. Soc. 74, 249-254. doi:10.1007/s11746-997-0131-z

Hayes DG, Kleiman R, Phillips BS. 1995a. The triglyceride composition, structure, and presence of estolides in the oils of lesquerella and related species. J. Am. Oil Chem. Soc. 72, 559-569. doi:10.1007/BF02638857

Hayes DG and Kleiman R. 1995b. Lipase-catalyzed synthesis and properties of estolides and their esters. J. Am. Oil Chem. Soc, 72, 1309-1316. doi:10.1007/BF02546204

Hayes DG. 1996. The catalytic activity of lipases toward hydroxy fatty acids - A review. J. Am. Oil Chem. Soc. 73, 543-549. doi:10.1007/BF02518105

Isbell TA, Kleiman R, Plattner BA. 1994a. Acid catalyzed condensation of oleic acid into estolides and polyestolides. J. Am. Oil Chem. Soc. 71, 169-174. doi:10.1007/BF02541552

Isbell TA, Kleiman R. 1994b. Characterization of estolides produced from the acid-catalyzed condensation of oleic acid. J. Am. Oil Chem. Soc. 71, 379-383. doi:10.1007/BF02540517

Isbell TA, Kleiman R. 1996. Mineral acid-catalyzed condensation of meadowfoam fatty acids into estolides. J. Am. Oil Chem. Soc. 73, 1097-1107. doi:10.1007/BF02523369

Isbell TA, Frykman HB, Abbott TP, Lohr JE. 1997. Optimization of the sulfuric acid-catalyzed estolide synthesis from oleic acid. J. Am. Oil Chem. Soc. 74, 473-476. doi:10.1007/s11746-997-0109-x

Isbell TA, Abbott TP, Dworak JA. 2000. Shampoos and conditioners containing estolides U.S. Patent 6,051,214.

Isbell TA, Edgcomb MR, Lowery BA. 2001. Physical properties of estolides and their ester derivatives. Ind. Crops and Prod. 13, 11-20. doi:10.1016/S0926-6690(00)00045-5

Isbell T A, Cermak SC. 2002. Synthesis of triglyceride estolides from lesquerella and castor oils. J. Am. Oil Chem. Soc., 79, 1227-1233. doi:10.1007/s11746-002-0632-1

Isbell TA, Lowery BA, DeKeyser SS, Winchell ML, Cermak SC. 2006. Physical properties of triglyceride estolides from lesquerella and castor oils. Ind. Crops and Prod. 23, 256-263. doi:10.1016/j.indcrop.2005.08.001

Kiatsimkul P, Suppes GJ, Hsieh F, Lozada Z, Tu Y. 2008. Preparation of high hydroxyl equivalent weight polyols from vegetable oils. Ind. Crops and Prod. 27, 257-264. doi:10.1016/j.indcrop.2007.09.006

Kleiman R, Spencer GF, Earle FR, Nieschlang HJ. 1972. Tetra-acid triglycerides containing new hydroxy eicosadienoyl moiety in Lesquerella auriculata seed oil. Lipids 7, 660-665. doi:10.1007/BF02533073

Kurth TL, Byars JA, Cermak SC, Sharma BK, Biresaw, G. 2007. Non-linear adsorption modeling measurements. Wear 262, 536-544. doi:10.1016/j.wear.2006.06.020

Lawate, SS. 1995. Triglyceride oils thickened with estolides of hydroxy-containing triglycerides. U.S. Patent 5, 427,704.

Meyer, H. 1897. Arch. Pharm. 237, 184. doi:10.1002/ardp.18972350115

Modak SN, Kane JG. 1965. Studies in estolides. I. kinetics of estolide formation and decomposition. J. Am. Oil Chem. Soc. 42, 428-432. doi:10.1007/BF02635584

Moser BR, Sharma BK, Doll KM, Erhan SZ. 2007. Diesters from oleic acid: Synthesis, low temperature properties and oxidation stability. J. Am. Oil Chem. Soc. 84, 675-680. doi:10.1007/s11746-007-1083-z

Pages X, Alfos C. 2001. Synthesis of new derivatives from vegetable sunflower oil methyl ester via epoxidation and oxirane opening. Oleagineux Crops gras Lipides 8, 122-125.

Payne-Wahl K, Kleiman R. 1983. Quantitation of estolide triglycerides in Sapium seeds by high performance liquid chromatography with infrared detection. J. Am. Oil Chem. Soc. 60, 1011-1012. doi:10.1007/BF02660218

Penoyer, CE, Fischer, W, Bobalek, EG. 1954. Synthesis of drying oils by thermal splitting of secondary fatty acid esters of castor oil. J. Am. Oil Chem. Soc. 31, 366-370. doi:10.1007/BF02545511

Platner RD, Payne-Wahl K, Tjarks, LW. 1979. Hydroxy acids and estolide triglycerides of Heliophila amplexicaulis L.f. Seed Oil. Lipids 14, 576-579.

Teeter HM, Gast LE, Bell EW, Cowan JC. 1953. Synthetic lubricants from hydroxystearic acids. Ind. Eng. Chem. 45, 1777-1779. doi:10.1021/ie50524a045

Zerkowski JA, Nunez A, Solaiman DKY. 2008. Structured estolides: Control of length and sequence. J. Am. Oil Chem. Soc 85, 277-284. doi:10.1007/s11746-007-1185-7

Descargas

Publicado

2011-03-30

Cómo citar

1.
Isbell TA. Propiedades físicas y químicas de los estólidos. Grasas aceites [Internet]. 30 de marzo de 2011 [citado 4 de mayo de 2025];62(1):8-20. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1293

Número

Sección

Revisión