Estimación de los términos de transferencia de masa en la recuperación de licopeno empleando aceite de Moringa oleifera Lam como solvente

Autores/as

DOI:

https://doi.org/10.3989/gya.0223221

Palabras clave:

Aceite de semilla de Moringa oleífera, Coeficiente de transferencia de masa, Constante cinética, Difusividad efectiva, Extracción de licopeno

Resumen


El objetivo del presente trabajo fue evaluar los términos asociados a la transferencia de masa en la extracción de licopeno a partir del residuo de la industria de conservas de tomate. Como solvente se utilizó aceite de Moringa oleífera Lam. Se realizó una extracción ultrasónica sobre piel y semillas. Las variables operacionales investigadas fueron, temperatura (piel: 45, 60, 75, 90 ºC; semillas: 45, 60, 75 ºC), relación soluto/solvente (m/v) (1:20, 1:25, 1:30), tamaño de partícula (piel: <1, 1-2, >3.15 mm; semilla: <1, 1-2, >2 mm) y métodos de separación del extracto (filtración y centrifugación). Se determinaron la constante cinética, la concentración de licopeno en la superficie del sólido, el coeficiente volumétrico de transferencia de masa y la difusividad efectiva. A mayor contante cinética, mayor coeficiente volumétrico de transferencia de masa. La difusividad efectiva aumentó con la temperatura. Los valores de energía de activación sugieren un posible deterioro del licopeno a temperaturas superiores a las óptimas. El uso del aceite de M. oleífera como solvente debe incrementar el valor biológico de los extractos de licopeno.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. 2000. Official Method of Analysis of AOAC Intl. 17th ed. Method 990.41. Association of Official Analytical Chemists, Arlington, VA, USA

Bailey JR. 2015. Lycopene: Food sources, potential role in human health and antioxidant effects. Nova Science Publishers, NY, USA

Baranska M, Kaczor A. 2016. Carotenoids: Nutrition, Analysis and Technology. John Wiley & Sons Press, London, UK https://doi.org/10.1002/9781118622223

Choksi P, Vishal Y. 2007. A Review on Lycopene: extraction, purification, stability and applications. Int. J. Food Propert. 10, 289-298. https://doi.org/10.1080/10942910601052699

Cruz R, González G and Sánchez C. 2013. Functional properties and health benefits of lycopene. Nutrición Hospitalaria. 28, 6-15.

Cruz L, Clemente G, Mulet A, Ahmad M, Barrajón E, García J. 2016. Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. J. Food Eng. 168, 251-258. https://doi.org/10.1016/j.jfoodeng.2015.08.001

Devinder K, Ali W, Oberoi S, Sogi S. 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem. 108, 711-718. https://doi.org/10.1016/j.foodchem.2007.11.002 PMid:26059152

Dolatabadi Z, Elhami H, Farzaneh V, Feizabad A, Estiri H., Bakhshabadi, H. 2016. Modeling of the lycopene extraction from tomato pulps. Food Chem. 190, 968-973. https://doi.org/10.1016/j.foodchem.2015.06.069 PMid:26213063

Ferrer C, Zumalacárregui B, Mazorra M. 2020. Caracterización físico-química del aceite de semillas de moringa oleífera. Centro Azúcar 47 (4), 1-11.

Galanakis M. 2015. Food Waste Recovery. Processing Technologies and Industrial Techniques. First Edition, Academic Press, New York, US.

Gámez J, Noguera R, Vertucci C, Sandoval T. 2016. Comparative study of two lycopene extraction methods from tomato waste processing. Rev. Venezolana Cienc. Tecnol. Aliment. 8, 118-128.

Gharsallah K, Rezig L, Kamel M, Abdellah C, Taoufik S. 2021. Chemical composition and profile characterization of Moringa oleifera seed oil. South Afric. J. Bot. 137, 475-482. https://doi.org/10.1016/j.sajb.2020.11.014

Hoyos CG, Guerra AS, Pérez SA, Velásquez-Cock J, Villegas M, Gañán P, Gallego RZ. 2022. An Edible Oil Enriched with Lycopene from Pink Guava (Psidium guajava L.) using different mechanical treatments. Molecules 27, 1038. https://doi.org/10.3390/molecules27031038 PMid:35164301 PMCid:PMC8837924

Kumcuoglu S, Yilmaz T, Tavman S. 2014. Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51, 4102-4107. https://doi.org/10.1007/s13197-013-0926-x PMid:25477688 PMCid:PMC4252437

Lianfu Z, Zelong L. 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultras. Sonochem. 5, 731-737. https://doi.org/10.1016/j.ultsonch.2007.12.001 PMid:18226944

Meireles M, Hatami T, Cavalcanti N, Takeuchi M. 2012. Supercritical fluid extraction of bioactive compounds from Macela (Achyrocline satureioides) flowers: Kinetic, experiments and modeling. J. Supercrit. Fluids. 65, 71-77. https://doi.org/10.1016/j.supflu.2012.03.001

Nour V, Panaite T, Ropota M, Turcu R, Trandafir I, Corbu A. 2018. Nutritional and bioactive compounds in dried tomato processing waste. J. Food 16, 222-229. https://doi.org/10.1080/19476337.2017.1383514

Oreopoulou V, Strati F. 2011. Process optimization for recovery of carotenoids from tomato waste. Food Chem. 129, 747-752. https://doi.org/10.1016/j.foodchem.2011.05.015 PMid:25212294

Özcan M. 2020. Moringa spp: Composition and bioactive properties. South Afric. J Bot. 129, 25-31 https://doi.org/10.1016/j.sajb.2018.11.017

Pineilo M, Sineiro J. 2006. Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J. Food Eng. 77, 57-63. https://doi.org/10.1016/j.jfoodeng.2005.06.021

Poojary M, Passamonti, P. 2015. Extraction of lycopene from tomato processing waste: Kinetics and modeling. Food Chem. 173, 943-950. https://doi.org/10.1016/j.foodchem.2014.10.127 PMid:25466110

Rahimi S and Mikani M. 2019. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem. J. 146, 1033-1042. https://doi.org/10.1016/j.microc.2019.02.039

Rodríguez Z, Robaina M, Jáuregui U, Blanco A, Rodríguez E. 2014. Employment of the ultrasonic radiation for the extraction of bioactive compounds of natural sources. Current state and perspectives. Rev. CENIC Cienc. Quím. 45, 139-147.

Rodríguez D. 2016. Food Carotenoids: Chemistry, Biology, and Technology. First Edition. Oxford: IFT Press Series.

Treybal E. 1997. Operations with Transfer of Mass. Rhode Island: McGraw-Hill

Turhan I, Tetik N, Aksu M, and Karhan M, Certel, M. 2006. Liquid-solid extraction of soluble solids and total phenolic compounds of carob bean (Ceratonia siliqua l.). J. Food Process Eng. 29, 498-507 https://doi.org/10.1111/j.1745-4530.2006.00078.x

Valdés G, Viera L, Rodríguez R. 2015. Influence of the operation conditions on the polyphenols from the leaves of Moringa oleifera Lam. Rev. CENIC Cienc. Quím. 46, 135-145

Varzakas T, Leach C, Israilides J, Arapoglou D. 2005. Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzyme Microbiol. Technol. 37, 29-41. https://doi.org/10.1016/j.enzmictec.2004.06.015

Waliszewski N, Blasco G. 2010. Properties nutraceutical of the lycopene. Salud Pública de México 52, 254-265 https://doi.org/10.1590/S0036-36342010000300010 PMid:20485889

Yilmaz T, Kumcuoglu S, Tavman S. 2017. Ultrasound-assisted extraction of lycopene and β-carotene from tomato-processing wastes. Italian J. Food Sci. 29, 186-194.

Publicado

2023-10-10

Cómo citar

1.
Sariego Y, Pita A, González M, Acosta G, Zumalacárregui B, Cruz L. Estimación de los términos de transferencia de masa en la recuperación de licopeno empleando aceite de Moringa oleifera Lam como solvente. Grasas aceites [Internet]. 10 de octubre de 2023 [citado 20 de mayo de 2024];74(3):e519. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2062

Número

Sección

Investigación