Caracterización química del aceite de girasol oxidado mediante UV y ozono con diferentes grados de oxidación y estudio de su acción antimicrobiana

Autores/as

DOI:

https://doi.org/10.3989/gya.1107222

Palabras clave:

Aceite de girasol, Espectroscopía, Irradiación UV, Oxidación, Ozono

Resumen


La oxidación por acción del ozono tiene lugar a tasas muy altas e implica la reacción de las moléculas de ozono con los dobles enlaces de los ácidos grasos, seguida de la formación de productos de oxidación estables con actividad biológica. En el presente trabajo se realizó un estudio comparativo del aceite de girasol oxidado por luz UV y por ozono. Este estudio consistió en la caracterización química del aceite de girasol oxidado por irradiación UV y por ozonización. En segundo lugar, se evaluó la influencia en la actividad germicida potencial del producto final obtenido en varias condiciones de ozonización. Los resultados indicaron que, en las condiciones estudiadas, el aumento de la dosis de irradiación UV no produjo cambios significativos en el nivel de oxidación del aceite. La ozonización promovió la formación de compuestos oxigenados en mayor proporción, aumentando su concentración a medida que aumentaba la dosis de ozono aplicada. La actividad germicida de los aceites se comportó de forma similar, encontrándose una actividad considerablemente mayor en los aceites ozonizados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anzolin AP, da Silveira-Kaross NL, Bertol, CD. 2020. Ozonated oil in wound healing: what has already been proven?. Medical Gas Resear. 10, 54-59. https://doi.org/10.4103/2045-9912.279985 PMid:32189671 PMCid:PMC7871935

Bailey P.1978. Ozonation in Organic Chemistry, V.1: olefinic Compounds. https://doi.org/10.1016/B978-0-12-073101-5.50008-1 PMid:23547

Bouzid D, Merzouki S, Boukhebti H, Zerroug, MM. 2021. Various Antimicrobial Agent of Ozonized Olive Oil. Ozone: Sci. Engin. 43, 606-612. https://doi.org/10.1080/01919512.2021.1893151

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Rev. Food Sci. Food Saf. 5, 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

CLSI. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2012. Approved Standard, Ninth Edition. M07-A9. 32(2).

De Almeida NR, Beatriz A, de Arruda EJ, de Lima DP, de Oliveira LCS, Micheletti AC. 2016. Ozonized vegetable oils: Production, chemical characterization and therapeutic potential. In: Holt, B. (Ed.) Vegetable Oil: Properties, Uses and Benefits. Nova Publisher, New York, 129-160.

Firestone D. 2013. Physical and chemical characteristics of oils, fats, and waxes. AOCS press Urbana, IL

Guerra-Blanco P, Chairez I, Poznyak T, Brito-Arias M. 2021. Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils. Ozone: Sci. Engin. 43, 546-561. https://doi.org/10.1080/01919512.2020.1868972

Higa B, Cintra BS, Álvarez CM, Ribeiro AB, Ferreira JC, Tavares DC, Enriquez V, Martinez LR, Pires, RH. 2022. Ozonated oil is effective at killing Candida species and Streptococcus mutans biofilm-derived cells under aerobic and microaerobic conditions. Medical Mycol. 60, myac055. https://doi.org/10.1093/mmy/myac055 PMid:35869980 PMCid:PMC9359064

Ledea-Lozano OE, Force EM, Mancheño RG, Alaiz, M, Gómez MD, Dobarganes C, Mirabal JM, Hernández Castro C, Rosado Pérez A, Vidal TC. 2005. Aplicación de Métodos Cromatograficos en el estudio de la Composición Química del Aceite de Girasol Ozonizado" OLEOZON"®. Rev. CENIC. Cien. Quím. 36, 1-14.

Ledea-Lozano O, Correa T, Escobar M, Rosado A, Molerio J, Hernández C, Jardines D. 2001. Volatile Components of Ozonized Sunflower Oil "OLEOZON®". Ozone: Sci. Engin. 23, 121-126. https://doi.org/10.1080/01919510108961994

Ledea-Lozano OE, Fernández-García LA, Gil-Ibarra D, Bootello MA, Garcés R, Martínez-Force E, Salas JJ. 2019a. Characterization of different ozonized sunflower oils II. Triacylglycerol condensation and physical properties. Grasas Aceites 70, e330. https://doi.org/10.3989/gya.1167182

Ledea-Lozano OE, Fernández-García LA, Gil-Ibarra D, Tena N, Garcés R, Martínez-Force E, Salas JJ. 2019b. Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas Aceites 70, e329. https://doi.org/10.3989/gya.1166182

Luna G, Morales MT, Aparicio R. 2006. Changes induced by UV radiation during virgin olive oil storage. J. Agric. Food Chem. 54, 4790-4794. https://doi.org/10.1021/jf0529262 PMid:16787029

Menéndez S, González R, Ledea-Lozano O, Hernández F, León OS, Díaz M. 2008. Ozono, aspectos básicos y aplicaciones clínicas. La Habana, CENIC.

Poznyak T, Blanco PG, Martínez AP, Oria IC, Cuevas CLS. 2018. Ozone Dosage is the Key Factor of Its Effect in Biological Systems. In Jan Derco, Marian Koman (Eds.) Ozone in Nature and Practice. IntechOpen, London. Chapter 3. https://doi.org/10.5772/intechopen.76843

Sechi LA, Lezcano I, Nunez N, Espim M, Duprè I, Pinna A, Molicotti P, Fadda G, Zanetti S. 2001. Antibacterial activity of ozonized sunflower oil (Oleozon). J. Appl. Microbiol. 90, 279-284. https://doi.org/10.1046/j.1365-2672.2001.01235.x PMid:11168731

Skalska K, Ledakowicz S, Perkowski J, Sencio B. 2009. Germicidal properties of ozonated sunflower oil. Ozone Sci. Eng. 31, 232-237. https://doi.org/10.1080/01919510902838669

Soriano NU, Migo VP, Matsumura M. 2003. Ozonation of sunflower oil: spectroscopic monitoring of the degree of unsaturation. J. Am. Oil Chem. Soc. 80, 997-1001. https://doi.org/10.1007/s11746-003-0810-1

Tenllado van der Reijden, D. 2013. Procedimientos de obtención de lípidos portadores como sistemas de liberación de ingredientes alimentarios bioactivos. 2013 Tesis de doctorado. Universidad Autónoma de Madrid.

Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. 2020. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules 25, 334. https://doi.org/10.3390/molecules25020334 PMid:31947580 PMCid:PMC7024311

Uzun H, Kaynak EG, Ibanoglu E, Ibanoglu S. 2018. Chemical and structural variations in hazelnut and soybean oils after ozone treatments. Grasas Aceites, 69, e253. https://doi.org/10.3989/gya.1098171

Valacchi G, Zanardi I, Lim Y, Belmonte G, Miracco C, Sticozzi C, Bocci V, Travagli V. 2013. Ozonated oils as functional dermatological matrices: Effects on the wound healing process using SKH1 mice. Int. J. Pharmaceut. 458, 65-73. https://doi.org/10.1016/j.ijpharm.2013.09.039 PMid:24144953

Villanueva E, Rodríguez G, Aguirre E, Castro V. 2017. Influencia de antioxidantes en la estabilidad oxidativa del aceite de chia (Salvia hispanica L.) por rancimat. Scientia agropecuaria, 8, 19-27. https://doi.org/10.17268/sci.agropecu.2017.01.02

Waltking AE, Wessels H. 1981. Chromatographic Separation of Polar and Nonpolar Components of Frying Fats, J. Assoc. Offic. Anal. Chem. 64, 1329-1330. https://doi.org/10.1093/jaoac/64.6.1329

Publicado

2023-12-30

Cómo citar

1.
Fernández-García L, Ledea-Lozano O, Fernández-Torres I, Jauregui Haza U, Garcés R, Martínez-Force E, Venegas-Calerón M, Salas J. Caracterización química del aceite de girasol oxidado mediante UV y ozono con diferentes grados de oxidación y estudio de su acción antimicrobiana. Grasas aceites [Internet]. 30 de diciembre de 2023 [citado 20 de mayo de 2024];74(4):e524. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2113

Número

Sección

Investigación

Datos de los fondos

Consejo Superior de Investigaciones Científicas
Números de la subvención ICOOPCOOPB20153

Artículos más leídos del mismo autor/a

<< < 1 2