Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae

Authors

  • F. K. El Baz Plant Biochemistry Department, National Research Centre
  • G. S. El Baroty Biochemistry Department of, Faculty of Agriculture
  • H. H. Abd El Baky Plant Biochemistry Department, National Research Centre
  • O. I. Abd El-Salam Applied Organic Chemistry Department, National Research Centre
  • E. A. Ibrahim Plant Biochemistry Department, National Research Centre

DOI:

https://doi.org/10.3989/gya.050213

Keywords:

Antibacterial, Anticancer, Antiviral, Cells, HepG2, HSV-1, Marine algae, MCF7, Sulfolipids

Abstract


The sulfolipid classes (SLs) in the total lipids of five species of marine algae, two species of Rhodophyta (Laurencia popillose, Galaxoura cylindriea), one species of Chlorophyta (Ulva fasciata), and two species of Phaeophyta (Dilophys fasciola, Taonia atomaria) were separated and purified on DEAE-cellulose column chromatography. The SLs component was identified by IR, gas chromatography MS/MS and liquid chromatography MS/MS. The level of SLs contents va ried from 1.25% (in L. papillose) to 11.82% (in D. fasciola) of the total lipid contents. However, no significant differences in sulfate content (0.13 – 0.21%) were observed among all these algae species. All SLs were characterized by high contents of palmitic acid (C 16:0), which ranged from 30.91% in G. cylindriea to 63.11% in T. atomatia. The main constitutes of algal sulfolipids were identified as sulfoquinovosyl-di-acylglycerol and sulfoquinovosyl acylglycerol. The sulfolipids of different algal species exhibited remarkable antiviral activity against herps simplex virus type 1 (HSV-1) with an IC50 ranging from 18.75 to 70. 2 μg mL–1. Moreover, algal sulfolipid inhibited the growth of the tumor cells of breast and liver human cancer cells with IC50 values ranging from 0.40 to 0.67 μg mL–1 for human breast adenocarcinoma cells (MCF7).

Downloads

Download data is not yet available.

References

Al-Fadhli A, Wahidulla S, D'Souza L. 2006. Glycolipids from the red alga Chondria armata (Ku.tz.) Okamura. Glycobiology 16, 902-915. http://dx.doi.org/10.1093/glycob/cwl018 PMid:16799167

Araki S, Sakurai T, Oohusa T, Kayama M, Sato N. 1989. Characterization of sulfoquinovosyl diacylglycerol from marine red algae. Plant Cell Physiol. 30, 775-781.

Araki S, Sakurai T, Oohusa T, Kayama M, Nisizawa K. 1990. Content of arachidonic and eicosapentaenoic acids in polar lipids from Gracilaria (Gracilariales, Rhodophyta). Hydrobiologia 204/205, 513-519. http://dx.doi.org/10.1007/BF00040279

Arunkumar K, Selvapalam N, Rengasamy R. 2005. The antibacterial compound sulphoglycerolipid 1-0 palmitoyl-3-0 (6′-sulpho--quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot. Mar. 48, 441-445. http://dx.doi.org/10.1515/BOT.2005.058

Bergé PJ, Debiton E, Dumay J, Duand P, Barthomeuf C. 2002. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridiumcruentum. J. Agric. Food Chem. 50, 6227-6232. http://dx.doi.org/10.1021/jf020290y PMid:12358507

Benning C, Somerville RC. 1992. Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J. Bacteriol. 174, 2352-2360. PMid:1551852 PMCid:PMC205858

Benning C, Garavito RM. 2009. Sulfolipid Biosynthesis and Function in Plants, Ru.diger Hell et al. (Eds.), Sulfur Metabolism in Phototrophic Organisms, 185-200.

Bhaskar N, Hosakawa M, Miyashita K. 2004. Growth inhibition of human pro- myelocytic Leukemia (HL- 60) cells by lipid extracts of marine algae Sargassum marginatum (Fucales, phaeophyta) harvested off Goa (west coast of India) with special reference to fatty acid composition. Indian J. Mar. Sci. 33, 335-360.

Bigogno C. Khozin-Goldberga I, Boussibaa S, Vonshaka A, Cohena Z. 2002. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem. 60, 497-503. http://dx.doi.org/10.1016/S0031-9422(02)00100-0

Chirasuwan N, Chaiklahan R, Kittakoop P, Chanasattru W, Ruengjitchatchawalya M, Tanticharoen M, Bunnag B. 2009. Anti HSV-1 activity of sulphoquinovosyl diacylglycerol isolated from Spirulina platensis. Sci. Asia 35, 137-141. http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.137

De-Souza ML, Iacomini M, Gorin AJP, Sari SR, Haddad AM, Sassaki LG. 2007. Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints. Chem. Phys. Lipids 145, 85-96. http://dx.doi.org/10.1016/j.chemphyslip.2006.11.001 PMid:17174289

Ermanno A, Guido B, Gianguido R, Ronald JW. 1994. FT-IR study of the interaction of magnesium ferrite with SO2. Catal. Lett. 23, 353-360. http://dx.doi.org/10.1007/BF00811369

Gerasimenko IN, Busarova GN, Moiseenko PO. 2010. Age dependent changes in the content of lipids, fatty acids and pigments in brown alga Costaria costata. Russ. J. Plant Physiol. 57, 62-68. http://dx.doi.org/10.1134/S1021443710010085

Gomes KA, Gomes AA. 1984. Statistical procedures for agricultural research. 2nd ed. Jon Willey and Sons Inc, New York, U.S.A.

Greenwood D. 1983. Antimicrobial chemotherapy, Part II-Laboratory Aspects of Antimicrobial Therapy Bailliere, Tindall, London, p. 71.

Gustafson KM, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML. 1989. AIDsantiviral sulfolipid from cynobacteria (blue-green algae). J. Nat. Cancer Inst. 81, 1254-1258. http://dx.doi.org/10.1093/jnci/81.16.1254 PMid:2502635

Hammer KA, Carson CF, Riley TV. 1999. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86, 985-990. http://dx.doi.org/10.1046/j.1365-2672.1999.00780.x PMid:10438227

Hossain Z, Kurihara H, Masashi H, Takahashp K. 2005. Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in CACO-2 cells with algal glycolipids. In Vitro Cell. Dev. Biol. Animal 41, 154-159. http://dx.doi.org/10.1290/0409058.1 PMid:16153148

Keusgen M, Curtis MJ, Thibault P. 1997. Sulfoquinovosyl diacylglycerols from the alga Heterosigma carterae. Lipids 32, 1101-1112. http://dx.doi.org/10.1007/s11745-997-0142-9 PMid:9358437

Khotimchenko VS. 2002. Distribution of glycoglycerolipids in marine algae and grasses. Chem. Nat. Compd. 38, 223-229. http://dx.doi.org/10.1023/A:1020471709232

Khotimchenko VS. 2003. The fatty acid composition of glycolipids of marine macrophytes. Russ. J. Mar. Biol. 29, 126-128. http://dx.doi.org/10.1023/A:1023960825983

Liptak A, Balla E, Lorant J, Sajtosa F, Lászl S. 2004. The first synthesis of secondary sugar sulfonic acids by nucleophilic displacement reactions. Tetrahedron Lett. 45, 839-842. http://dx.doi.org/10.1016/j.tetlet.2003.11.025

Luddy FE, Beerford RA, Riemen RW. 1960. Direct conversion of lipid component to their fatty acid methyl ester. J. Am. Oil Chem. Soc. 37, 447-451. http://dx.doi.org/10.1007/BF02631205

Maeda N, Hada T, Murakami-Nakaia C, Kuriyamaa I, Hideki I, Fukumorid Y, Hiratsukaf J, Yoshidaa H, Sakaguchig K, Mizushinaa Y. 2005. Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach. J. Nutr. Biochem. 16, 121-128. http://dx.doi.org/10.1016/j.jnutbio.2004.08.005 PMid:15681172

Maeda N, Kokai Y, Ohtani S, Sahara H, Kumamoto- Yonezawa Y, Kuriyama I, Hada T, Sato N, Yoshida H, Mizushina Y. 2008. Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice. Lipids 43, 741-748. http://dx.doi.org/10.1007/s11745-008-3202-5 PMid:18594894

Matanjun P, Mohamed S, Mustapha MN, Muhammad K. 2009. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 21, 75-80. http://dx.doi.org/10.1007/s10811-008-9326-4

Manivannan K, Thirumaran G, Karthikai, Devi G, Hemalatha A, Anantharaman P. 2008. Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. American-Eurasian J. Bot. 1, 32-37.

Mizushina Y, Watanabe I, Ohta K, Takemura M, Sahara H, Takahashi N, Gasa S, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K. 1998. Studies on inhibitors of mammalian DNA polymerase alpha and beta: sulfolipids from a Pteridophyte and Athyrium niponicum. Biochem. Pharmacol. 55, 537-541 http://dx.doi.org/10.1016/S0006-2952(97)00536-4

Mizushina Y, Maeda N, Kawasaki M, Ichikawa H, Murakami C, Takemura M, Xu X, Sugawara F, Ukumori Y, Yoshida H, Sakaguchi K.,2003. Inhibitory action of emulsified sulfoquinovosyl acylglycerol on mammalian DNA polymerases. Lipids 38, 1065-1074. http://dx.doi.org/10.1007/s11745-006-1162-1 PMid:14669972

Naumann I. 2009. Sulfoquinovosyldiacylglyceride antiviral active Substanzen. ph.D. Thesis, Fakultät der Universitt Erlangen-Nürnberg.

Norman AH, Mischke FC, Allen B, Vincentt SJ. 1996. Semi-preparative isolation of plant sulfoquinovosyldiacylglycerols by solid phase extraction and HPLC procedures. J. Lipid Res. 37, 1372-1376. PMid:8808772

Ohta K, Mizushina Y, Hirata N, Takemure M, Sugawar F, Matsukage A, Yoshida S, Sakaguchi K. 1998. Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIVreverse transcriptase type1 from a marine red alga. Chem. Pharm. B. 46, 281-291. http://dx.doi.org/10.1248/cpb.46.684

Pons A, Timmerman P, Leroy Y, Zanetta JP. 2002. Gas-chromatography/mass-spectrometry analysis of human skin constituents as heptafluorobutyrate derivatives with special reference to long-chain bases. J. Lipid Res. 43, 794-804. PMid:11971951

Ranjaniv S, Steven W. 1995. FTIR characterization of the interaction of oxygen with zinc sulfide. Indian Eng. Chem. Res. 34, 699-702. http://dx.doi.org/10.1021/ie00041a032

Roughan PG, Bratt DR. 1968. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissue. Anal. Biochem. 22, 74-88. http://dx.doi.org/10.1016/0003-2697(68)90261-3

Sanina MN, Goncharova NS, Kostetsky YE. 2004. Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65, 721-730. http://dx.doi.org/10.1016/j.phytochem.2004.01.013 PMid:15016568

Sahara H, Hanashima S, Yamazak, Takahashi TS, Sugawara F, Ohtani S, Ishikawa M, Mizushina Y, Ohta K, Shimozawa K, Gasa S, Jimbow K, Sakaguchi K, Sato N, Takahashi N. 2002. Anti-tumor effect of chemically synthesized sulfolipids based on sea Urchin's natural sulfonoquinovosylmonoacylglycerols. J. Cancer Res. 93, 85-92.

Shao ZY, Cai JN, Ye QZ, Guo YI. 2002. Crassicaulisine, sulphonoglycolipid from red algae Chondria crassicaulis Harv. J. Asian Nat. Prod. Res. 4, 205-209. http://dx.doi.org/10.1080/10286020290024004 PMid:12118510

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. National Cancer Inst. 82, 1107-1112. http://dx.doi.org/10.1093/jnci/82.13.1107 PMid:2359136

Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Bio. 1, 31-39. http://dx.doi.org/10.1038/35036052 PMid:11413487

Tebas P, Stabell EC, Olivo PD. 1995. Antiviral susceptibility testing with a cell line which expresses beta-galactosidase after infection with herpes simplex virus. Antimicrob. Agents Ch. 39, 1287-91. http://dx.doi.org/10.1128/AAC.39.6.1287

Terho TT, Hartiala K. 1971. Method for determination of the sulfate content of glycosaminoglycans. Anal. Biochem. 41, 471-476. http://dx.doi.org/10.1016/0003-2697(71)90167-9

Xue C, Hu Y, Saito H, Zhang Z, Li Z, Cai Y, Ou C, Lin H, Imbs AB. 2002. Molecular species composition of glycolipids from Sprirulina platensis. Food Chem. 77, 13. http://dx.doi.org/10.1016/S0308-8146(01)00315-6

Downloads

Published

2013-12-31

How to Cite

1.
El Baz FK, El Baroty GS, Abd El Baky HH, Abd El-Salam OI, Ibrahim EA. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae. Grasas aceites [Internet]. 2013Dec.31 [cited 2024Apr.26];64(5):561-7. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1463

Issue

Section

Research