Chemical characterization of sunflower oil oxidized by UV and ozone with different degrees of oxidation and study of their antimicrobial action

Authors

DOI:

https://doi.org/10.3989/gya.1107222

Keywords:

Oxidation, Ozone, Spectroscopy, Sunflower oil, UV irradiation

Abstract


Oxidation by the action of ozone takes place at high rates and involves the reaction of ozone molecules with fatty acid double bonds followed by the formation of stable oxidation products with biological activity. In the present work, a comparative study on sunflower oil oxidized by ultraviolet (UV) light and ozone was carried out. This study involved the chemical characterization of sunflower oil oxidized by UV irradiation and ozonation, in addition to assessing the germicidal activity of oxidized oils obtained under various conditions. The results indicated that under the conditions studied, the increase in the dose of UV irradiation did not produce significant changes in the level of oxidation of the oil. Ozonation promoted the formation of oxygenated compounds at higher rates, increasing in concentration as the applied dosage of ozone increased. The germicidal activity of the oils behaved similarly, with considerably higher activity found in the ozonized oils.

Downloads

Download data is not yet available.

References

Anzolin AP, da Silveira-Kaross NL, Bertol, CD. 2020. Ozonated oil in wound healing: what has already been proven?. Medical Gas Resear. 10, 54-59. https://doi.org/10.4103/2045-9912.279985 PMid:32189671 PMCid:PMC7871935

Bailey P.1978. Ozonation in Organic Chemistry, V.1: olefinic Compounds. https://doi.org/10.1016/B978-0-12-073101-5.50008-1 PMid:23547

Bouzid D, Merzouki S, Boukhebti H, Zerroug, MM. 2021. Various Antimicrobial Agent of Ozonized Olive Oil. Ozone: Sci. Engin. 43, 606-612. https://doi.org/10.1080/01919512.2021.1893151

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Rev. Food Sci. Food Saf. 5, 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

CLSI. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2012. Approved Standard, Ninth Edition. M07-A9. 32(2).

De Almeida NR, Beatriz A, de Arruda EJ, de Lima DP, de Oliveira LCS, Micheletti AC. 2016. Ozonized vegetable oils: Production, chemical characterization and therapeutic potential. In: Holt, B. (Ed.) Vegetable Oil: Properties, Uses and Benefits. Nova Publisher, New York, 129-160.

Firestone D. 2013. Physical and chemical characteristics of oils, fats, and waxes. AOCS press Urbana, IL

Guerra-Blanco P, Chairez I, Poznyak T, Brito-Arias M. 2021. Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils. Ozone: Sci. Engin. 43, 546-561. https://doi.org/10.1080/01919512.2020.1868972

Higa B, Cintra BS, Álvarez CM, Ribeiro AB, Ferreira JC, Tavares DC, Enriquez V, Martinez LR, Pires, RH. 2022. Ozonated oil is effective at killing Candida species and Streptococcus mutans biofilm-derived cells under aerobic and microaerobic conditions. Medical Mycol. 60, myac055. https://doi.org/10.1093/mmy/myac055 PMid:35869980 PMCid:PMC9359064

Ledea-Lozano OE, Force EM, Mancheño RG, Alaiz, M, Gómez MD, Dobarganes C, Mirabal JM, Hernández Castro C, Rosado Pérez A, Vidal TC. 2005. Aplicación de Métodos Cromatograficos en el estudio de la Composición Química del Aceite de Girasol Ozonizado" OLEOZON"®. Rev. CENIC. Cien. Quím. 36, 1-14.

Ledea-Lozano O, Correa T, Escobar M, Rosado A, Molerio J, Hernández C, Jardines D. 2001. Volatile Components of Ozonized Sunflower Oil "OLEOZON®". Ozone: Sci. Engin. 23, 121-126. https://doi.org/10.1080/01919510108961994

Ledea-Lozano OE, Fernández-García LA, Gil-Ibarra D, Bootello MA, Garcés R, Martínez-Force E, Salas JJ. 2019a. Characterization of different ozonized sunflower oils II. Triacylglycerol condensation and physical properties. Grasas Aceites 70, e330. https://doi.org/10.3989/gya.1167182

Ledea-Lozano OE, Fernández-García LA, Gil-Ibarra D, Tena N, Garcés R, Martínez-Force E, Salas JJ. 2019b. Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas Aceites 70, e329. https://doi.org/10.3989/gya.1166182

Luna G, Morales MT, Aparicio R. 2006. Changes induced by UV radiation during virgin olive oil storage. J. Agric. Food Chem. 54, 4790-4794. https://doi.org/10.1021/jf0529262 PMid:16787029

Menéndez S, González R, Ledea-Lozano O, Hernández F, León OS, Díaz M. 2008. Ozono, aspectos básicos y aplicaciones clínicas. La Habana, CENIC.

Poznyak T, Blanco PG, Martínez AP, Oria IC, Cuevas CLS. 2018. Ozone Dosage is the Key Factor of Its Effect in Biological Systems. In Jan Derco, Marian Koman (Eds.) Ozone in Nature and Practice. IntechOpen, London. Chapter 3. https://doi.org/10.5772/intechopen.76843

Sechi LA, Lezcano I, Nunez N, Espim M, Duprè I, Pinna A, Molicotti P, Fadda G, Zanetti S. 2001. Antibacterial activity of ozonized sunflower oil (Oleozon). J. Appl. Microbiol. 90, 279-284. https://doi.org/10.1046/j.1365-2672.2001.01235.x PMid:11168731

Skalska K, Ledakowicz S, Perkowski J, Sencio B. 2009. Germicidal properties of ozonated sunflower oil. Ozone Sci. Eng. 31, 232-237. https://doi.org/10.1080/01919510902838669

Soriano NU, Migo VP, Matsumura M. 2003. Ozonation of sunflower oil: spectroscopic monitoring of the degree of unsaturation. J. Am. Oil Chem. Soc. 80, 997-1001. https://doi.org/10.1007/s11746-003-0810-1

Tenllado van der Reijden, D. 2013. Procedimientos de obtención de lípidos portadores como sistemas de liberación de ingredientes alimentarios bioactivos. 2013 Tesis de doctorado. Universidad Autónoma de Madrid.

Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. 2020. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules 25, 334. https://doi.org/10.3390/molecules25020334 PMid:31947580 PMCid:PMC7024311

Uzun H, Kaynak EG, Ibanoglu E, Ibanoglu S. 2018. Chemical and structural variations in hazelnut and soybean oils after ozone treatments. Grasas Aceites, 69, e253. https://doi.org/10.3989/gya.1098171

Valacchi G, Zanardi I, Lim Y, Belmonte G, Miracco C, Sticozzi C, Bocci V, Travagli V. 2013. Ozonated oils as functional dermatological matrices: Effects on the wound healing process using SKH1 mice. Int. J. Pharmaceut. 458, 65-73. https://doi.org/10.1016/j.ijpharm.2013.09.039 PMid:24144953

Villanueva E, Rodríguez G, Aguirre E, Castro V. 2017. Influencia de antioxidantes en la estabilidad oxidativa del aceite de chia (Salvia hispanica L.) por rancimat. Scientia agropecuaria, 8, 19-27. https://doi.org/10.17268/sci.agropecu.2017.01.02

Waltking AE, Wessels H. 1981. Chromatographic Separation of Polar and Nonpolar Components of Frying Fats, J. Assoc. Offic. Anal. Chem. 64, 1329-1330. https://doi.org/10.1093/jaoac/64.6.1329

Published

2023-12-30

How to Cite

1.
Fernández-García L, Ledea-Lozano O, Fernández-Torres I, Jauregui Haza U, Garcés R, Martínez-Force E, Venegas-Calerón M, Salas J. Chemical characterization of sunflower oil oxidized by UV and ozone with different degrees of oxidation and study of their antimicrobial action. Grasas aceites [Internet]. 2023Dec.30 [cited 2024Apr.27];74(4):e524. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2113

Issue

Section

Research

Funding data

Consejo Superior de Investigaciones Científicas
Grant numbers ICOOPCOOPB20153

Most read articles by the same author(s)

1 2 > >>