Grasas y Aceites, Vol 67, No 2 (2016)

n-3 LCPUFA in the reversal of hepatic steatosis: the role of ACOX and CAT-1

G. S. Tapia
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile

D. González-Mañán
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile

A. D’Espessailles
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile

C. G. Dossi
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile


The aim of this study was to investigate the roles of the Acyl co-enzyme A oxidase (ACOX), carnitine acyl transferase I (CAT-1) and activating protein 1 (AP-1) in the reversal of hepatic steatosis with dietary change and n-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation. Male C57BL/6J mice were given either a control diet (CD) or a high fat diet (HFD) for 12 weeks, and then continued with the CD or CD plus n-3 LCPUFA for eight weeks. After this period, body and adipose visceral tissue weight were analyzed and liver samples were taken to measure ACOX, CAT-1 and c-jun levels. The dietary change from HFD to a norm caloric diet plus n-3 LCPUFA supplementation significantly reduced liver steatosis and adipose tissue: body weight ratio, along with an increase in the hepatic ACOX and CAT-1 levels and normalization of AP-1 expression that could favor the fatty acid beta-oxidation over lipogenesis and regulate inflammation. These results provide new data on the enzymatic metabolism underlying dietary change to a norm caloric diet plus n-3 LCPUFA supplementation.


ACOX (Acyl coenzyme A oxidase); AP-1(activating protein 1); CAT-1 (carnitine acyl transferase I); HFD (high fat diet); NAFLD (non-alcoholic fatty liver disease); n-3 LCPUFA (n-3 long chain polyunsaturated fatty acid); Reversion

Full Text:



Adams LA, Angulo P and Lindor KD. 2005. Nonalcoholic fatty liver disease. Can. Med. Assoc. J. 172, 899–905. PMid:15795412 PMCid:PMC554876

Angel P, Hattori K, Smeal T and Karin M. 1988. The jun proto-oncogene is positively autoregulated by its product, jun/AP-1. Cell. 55, 875–885.

Araya J, Rodrigo R, Pettinelli P, Araya V, Poniachik J and Videla L. 2010. Decreased liver fatty acid ?-6 and ?-5 desaturase activity in obese patients. Obesity. 18, 1460–1463. PMid:19875987

Araya J, Rodrigo R, Videla L, Thielemann L, Orellana M, Pettinelli P and Poniachik J. 2004. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106, 635–643. PMid:14720121

Aronis A, Madar Z and Tirosh O. 2005. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of J774.2 to macrophages triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221–1230. PMid:15808420

Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: The emerging view. J. Hepatol. 51, 212–223. PMid:19447517 PMCid:PMC2694233

Bartlett K and Eaton S. 2004. Mitochondrial ?-oxidation. Eur. J. Biochem. 271, 462–469. PMid:14728673

Bellentani S, Scaglioni F, Marino M and Bedogni G. 2010. Epidemiology of non-alcoholic fatty liver disease (NAFLD). Dig Dis. 28, 155–161. PMid:20460905

Brunt EM, Janney CG, Di Biscegle AM, Neuschwander-Tetri BA and Bacon BR. 1999. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467–2474. PMid:10484010

Delerive P, Fruchart JC and Staels B. 2001. Peroxisome proliferator-activated receptors ininflamation control. J. Endocrinology. 169, 453–459. PMid:11375115

De Roos B, Mavrommatis Y and Brouwer I. 2009. Longchain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br. J. Pharmacol. 158, 413–428. PMid:19422375 PMCid:PMC2757681

De Meijer V, Le H, Meisel J, Sharif M, Pan A, Nos. V and Puder M. 2010. Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model. Metabolism. 59, 1092–105. PMid:20060143 PMCid:PMC3361716

Dorn C, Engelmann J, Saugspier M, Koch A, Hartmann A, Müller M, Spang R, Bossenhorff A and Hellerbrand C. 2014. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Invest. 94, 394–408. PMid:24492282

Dossi CG, Tapia GS, Espinosa A, Videla LA and D'Espessailles A. 2014. Reversal of High-fat diet-induced hepatic steatosis by n-3 LCPUFA: role of PPAR-? and SREBP-1c. J. Nutr. Biochem. 25, 977–984. PMid:24993917

Dowman JK, Tomlinson JW and Newsome PN. 2010. Pathogenesis of non-alcoholic fatty liver disease. Int. J. Med. 103, 71–83.

Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, and Esquivel-Chirino C. 2011. Inflammation, Oxidative Stress, and Obesity. Int J Mol Sci. 12, 3117–32. PMid:21686173 PMCid:PMC3116179

Hasenfuss SC, Bakiri L, Thomsen M, Williams E, Auwerx J and Wagner E. 2014. Regulation of Steatohepatitis and PPAR? Signaling by Distinct AP-1 Dimers. Cell Metabolism. 19, 84–95. PMid:24411941 PMCid:PMC4023468

Hong S, Gronert K, Devchand PR, Moussignac RL and Serhan CN. 2003. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: Autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687. PMid:12590139

Houstis N, Rosen E and Lander E. 2006. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948. PMid:16612386

Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y and Okumura T. 2005. Increased expression of PPAR? in high fat dietinduced liver steatosis in mice. Bioch and Bioph Res Comms. 336, 215–222. PMid:16125673

Leamy AK, Egnatchik RA and Young JD. 2013. Molecular Mechanisms and the Role of Saturated Fatty Acids in the Progression of Non-Alcoholic Fatty Liver Disease. Prog Lipid Res. 52:165–174. PMid:23178552 PMCid:PMC3868987

Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. 2009. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 87, 679–695. PMid:19352614

Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. 2006. International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacol Rev. 58, 726–741. PMid:17132851

Musso G, Gambino G, and Cassader M. 2009. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. in Lipid Research. 48, 1–26. PMid:18824034

Nobili V and Sanyal AJ. 2012. Treatment of nonalcoholic fatty liver disease in adults and children: closer look at the arsenal. J. Gastroenterol. 47, 29–36. PMid:21983927

Poirier Y, Antonenkov VD, Glumoff T and Hiltunen JK. 2006. Peroxisomal ?-oxidation: A metabolic pathway with multiple functions. Mol Cell Res. 1763, 1413–1426.

Shapiro H, Tehilla M, Attal-Singer J, Bruck R, Luzzatti R and Singer P. 2011. The therapeutic potential of longchain omega-3 fatty acids in nonalcoholic fatty liver disease. Clin Nutr. 30, 6–19. PMid:20619513

Surwit RS, Kuhn CM, Cochrane C, McCubbin JA and Feinglos MN. 1988. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 37, 1163–1167. PMid:3044882

Thanos D, Georgopoulos K, Greenberg M and Leder P. 1988. c-jun dimerizes with itself and with c-fos, forming complexes of different DNA binding affinities. Cell. 55, 917–924.

Valenzuela R and Videla L. 2011. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct. 2, 644–648. PMid:22008843

Valenzuela R, Espinosa A, Gonz.lez D, Fern.ndez V, Videla LA, Romanque P, et al. 2012. N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. Plos One. 7, e46400. PMid:23082120 PMCid:PMC3474802

Videla L and Pettinelli P. 2012. Misregulation of PPAR functioning and its pathogenic consequences associated with nonalcoholic fatty liver disease in human obesity. PPAR Res. 2012, 1–14. PMid:23304111 PMCid:PMC3526338

Ye D, Zhang D, Oltman C, Dellsperger K, Lee HC and Van Rollins M. 2002. Cytochrome P-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J. Pharmacol. Exp. Ther. 303.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support