Grasas y Aceites, Vol 70, No 1 (2019)

Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview


https://doi.org/10.3989/gya.0690181

W. Shao
School of the Environment and Safety Engineering, Jiangsu University, China
orcid http://orcid.org/0000-0001-8067-3755

R. Ebaid
School of the Environment and Safety Engineering, Jiangsu University, China
orcid http://orcid.org/0000-0002-5976-5505

M. El-Sheekh
Botany Department, Faculty of Science, Tanta University, Egypt
orcid http://orcid.org/0000-0002-2298-6312

A. Abomohra
School of Energy and Power Engineering, Jiangsu University - Botany Department, Faculty of Science, Tanta University, China
orcid http://orcid.org/0000-0003-2784-3297

H. Eladel
Botany Department, Faculty of Science, Benha University, Egypt
orcid http://orcid.org/0000-0002-2369-2965

Abstract


Recently, microalgae cultivation for different applications, including the production of nutritional and pharmaceutical active compounds has received increasing attention. Among the different genera, Spirulina (Arthrospira sp.) is one of the most promising blue-green microalgae (Cyanophyta) because it is rich in antioxidants, essential amino acids (EAAs), minerals, proteins, polyunsaturated fatty acids and vitamins. It has a high protein content (60-70% of the dry weight), which is a complete protein, i.e. containing all EAAs. Therefore, Spirulina is currently a commercial product with high nutritional value and also a significant source of complementary and alternative medicine. The objective of the present work was to review the pharmaceutical and therapeutic applications of Spirulina, especially its antioxidant, anti-inflammatory, anti-cancer, anti-microbial, anti-diabetic, anti-obesity and anti-toxicity properties. The results were obtained from experiments in the literature performed in vitro and in vivo using experimental animals. The main reported active ingredients in Spirulina include phycocyanin, tocopherol, β-carotene, caffeic acids and chlorogenic acid, which showed individual or synergetic effects. In addition, the present review discusses the future perspectives of genetically modified Spirulina as a source for industrial products while producing valuable biomass photoautotrophically. Furthermore, the consequent environmental impacts of large-scale cultivation of Spirulina are discussed.

Keywords


Arthrospira sp.; Cultivation; Environmental impacts; GMO; Pharmaceuticals; Spirulina

Full Text:


HTML PDF XML

References


Abdel-Daim M, El-Bialy B, Abdel Rahman H, Radi A, Hefny H, Hassan A. 2016. Antagonistic effects of Spirulina platensis against subacute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed. Pharmacother. 77, 79–85. https://doi.org/10.1016/j.biopha.2015.12.003 PMid:26796269

Abomohra A, El-Sheekh M, Hanelt D. 2014. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 64, 237–244. https://doi.org/10.1016/j.biombioe.2014.03.049

Abomohra A, El-Shouny W, Sharaf M, Abo-Eleneen M. 2016. Effect of Gamma Radiation on Growth and Metabolic Activities of Arthrospira platensis. Braz. Arch. Biol. Technol. 59, e16150476. https://doi.org/10.1590/1678-4324-2016150476

Abomohra A, Eladel H, El-Esawi M, Wang S, Wang Q, He Z, Feng Y, Shang H, Hanelt D. 2018. Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresour. Technol. 249, 992–999. https://doi.org/10.1016/j.biortech.2017.10.102

Arun N, Gupta S, Singh DP. 2012. Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi. Int. J. Pharm. Sci. Res. 3, 4866–4875.

Baicus C, Baicus A. 2007. Spirulina did not ameliorate idiopathic chronic fatigue in four N-of-1 randomized controlled trials. Phytother. Res. 21, 570–573. https://doi.org/10.1002/ptr.2114 PMid:17335116

Bhunia B, Uday U, Oinam G, Mondal A, Bandyopadhyay T, Tiwari O. 2018. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr. Polym. 179, 228–243. https://doi.org/10.1016/j.carbpol.2017.09.091 PMid:29111047

Bini F, De Rossi E, Barbierato L, Riccardi G. 1992. Molecular cloning and sequencing of the ß-isopropylmalate dehydrogenase gene from the cyanobacterium Spirulina platensis. J. Gen. Microbiol. 138, 493–498. https://doi.org/10.1099/00221287-138-3-493 PMid:1593261

Bleakley S, Hayes M. 2017. Algal proteins: Extraction, application, and challenges concerning production. Foods 6, 33. https://doi.org/10.3390/foods6050033

Borowitzka M. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7, 3–15. https://doi.org/10.1007/BF00003544

Capelli B, Cysewski GR. 2010. Potential health benefits of Spirulina microalgae. Nutrafoods 9, 19–26. https://doi.org/10.1007/BF03223332

Castenholz RW. 1989. Subsection III, Order Oscillatoriales. In Stanley JT, Bryant MP, Pfenning N, Holt JG (Eds), Bergey's Manual of Systematic Bacteriology, Vol. 3, Baltimore: William and Wilkins, p. 1771.

Centeno P, Ballentine DL. 1999. Effects of culture conditions on production of antibiotically active metabolites by the marine alga Spyridia filamentosa (Ceramiaceae, Rhodophyta), I. Light. J. Appl. Phycol. 11, 217–224. https://doi.org/10.1023/A:1008113108834

Chagas B, DoradoC, Serapiglia M, Mullen C, Boateng A, Melo M, Ataíde C. 2016. Catalytic pyrolysis-GC/MS of Spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel 179, 124–134. https://doi.org/10.1016/j.fuel.2016.03.076

Cheevadhanarak S, Kanokslip S, Chaisawadi S, Rachdawong S, Tanticharoen M. 1993. Transformation system for Spirulina platensis. In Masojidek J, Setlik I. (Eds) Book of Abstracts of the 6th International Conference on Applied Algology, Czech Republic, p. 109.

Chen F, Zhang Y, Guo S. 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18, 603–608. https://doi.org/10.1007/BF00140211

Choi WY, Kang DH, Lee HY. 2013. Enhancement of immune activation activities of Spirulina maxima grown in deep sea water. Int. J. Mol. Sci. 14, 12205–12221. https://doi.org/10.3390/ijms140612205 PMid:23743830 PMCid:PMC3709782

Ciferri O. 1984. Spirulina, the edible microorganism. Microbiol. Rev. 47, 551–578.

Deng MD, Coleman JR. 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523–528. PMid:9925577 PMCid:PMC91056

Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S. 2000. Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS. Microbiol. Lett. 184, 207–213. https://doi.org/10.1111/j.1574-6968.2000.tb09015.x PMid:10713422

Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin layer photobioreactor. J. Appl. Phycol. 17, 403– 412. https://doi.org/10.1007/s10811-005-8701-7

Ebaid R, Elhussainy E, El-Shourbagy S, Ali S, Abomohra A. 2017. Protective effect of Arthrospira platensis against liver injury induced by copper nanoparticles. Orient. Pharm. Exp. Med. 17, 203–210. https://doi.org/10.1007/s13596-017-0264-z

El-Desouki N, Tabl G, Abdel-Aziz K, Salim E, Nazeeh N. 2015. Improvement in beta-islets of Langerhans in alloxan-induced diabetic rats by erythropoietin and Spirulina. J. Basic App. Zool. 71, 20–31.

Eriksen NT. 2016. Research trends in the dominating microalgal pigments, ?-carotene, astaxanthin, and phycocyanin used in feed, in foods, and in health applications. J. Nutr. Food Sci. 6, 507.

Global Energy Statistical Yearbook, Enerdata 2015. Available at https://yearbook.enerdata.net, Accessed on December 2017.

Gomont M. 1892–1893. Monographie des Oscillarièes. Ann. Sci. Nat. Bot. 15, 263–368, 16, 91–264.

Graverholt OS, Eriksen NT. 2007. Heterotrophic high-cell-density fedbatch and continuous-flZ cultures of Galdieria sulphuraria and production of phycocyanin. Appl. Microbiol. Biotechnol. 77, 69–75. https://doi.org/10.1007/s00253-007-1150-2 PMid:17786429

Han LK, Li DX, Xiang L, Kondo Y, Suzuki I, Okuda H.2006. Isolation of pancreatic lipase activity-inhibitory component of Spirulina platensis and it reduce postprandial triacylglycerolemia. Yakugaku. Zasshi. 126, 43–49. https://doi.org/10.1248/yakushi.126.43 PMid:16394649

Hayashi K, Hayashi T, Morita N. 1993. An extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phytother. Res. 7, 76–80. https://doi.org/10.1002/ptr.2650070118

Hayashi T, Hayashi K, Maedaa M, Kojima I. 1996. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 59, 83–87. https://doi.org/10.1021/np960017o PMid:8984158

Henrikson R. 1994. Microalga Spirulina, superalimento del futuro. Ronore Enterprises. 2nd ed. Ediciones Urano, Barcelona, Spain, pp. 222.

Honsthong A, Deshnium P, Paithoonrangsarid K, Cheevadhanarak S, Tanticharoen M. 2003. Differential responses of three acyl-lipid desaturases to immediate temperature reduction occurring in two lipid membranes of Spirulina platensis strain C1. J. Biosci. Bioeng. 96, 519–524. https://doi.org/10.1016/S1389-1723(04)70143-7

Hu J, Nagarajan D, Zhang Q, Chang J, Lee D. 2018. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009 PMid:28947090

Jimenez C, Cossio BR, Niell FX.2003. Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield. Aquaculture 221, 331–345. https://doi.org/10.1016/S0044-8486(03)00123-6

Kawata Y, Yano S, Kojima H, Toyomizu M. 2004. Transformation of Spirulina platensis strain C1 (Arthrospira sp. PCC9438) with Tn5 transposase–transposon DNA–cation liposome complex. Mar. Biotechnol. 6, 355–363. https://doi.org/10.1007/s10126-003-0037-1 PMid:15136915

Khan Z, Bhadouria P, Bisen P. 2005. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 6, 373–379. https://doi.org/10.2174/138920105774370607 PMid:16248810

Kim D, Kim J, Goh E, Kim W, Kim S, Seo Y, Jang C, Kang S. 2011. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant. Physiol. 168, 1960–1971. https://doi.org/10.1016/j.jplph.2011.05.008

Kokou F, Makridis P, Kentouri M, Divanach P. 2012. Anti-bacterial activity in microalgae cultures. Aquacult. Res. 43, 1520– 1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x

Liu Y, Xu L, Cheng N, Lin L, Zhang C. 2000. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J. Appl. Phycol. 12, 125–130. https://doi.org/10.1023/A:1008132210772

Manoj G, Venkataraman LV, Srinivas L. 1992. Antioxidant properties of Spirulina (Spirulina platensis). In: Seshadri CV, Jeejibai N, editors. ETTA National Symposium on Spirulina. MCRC Publishers, New York, USA, pp. 148–154.

Márquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S. 1993. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioeng. 5, 408–410. https://doi.org/10.1016/0922-338X(93)90034-6

Miranda MS, Cintra RG, Barros SM, Mancini-Filho J. 1998. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 31, 1075–1079. https://doi.org/10.1590/S0100-879X1998000800007 PMid:9777014

Mohanty P, Srivastava M, Krishna K. 1997. The Photosynthetic Apparatus of Spirulina: Electron Transport and Energy Transfer. In: Vonshak A, Spirulina platensis (Arthrospira) Physiology, cell-biology and biotechnology. 1997, Taylor & Francis Ltd., London.

Moorhead K, Capelli B, Cysewski G. 2012. Spirulina: Nature's Superfood. 3rd edition, Cyanotech Corporation, Kailua Kona, Hawaii, USA.

Mukherjee SB, Das M, Sudhandiran G, Shaha C. 2002. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J. Biol. Chem. 277, 24717–24727. https://doi.org/10.1074/jbc.M201961200 PMid:11983701

Murata N, Deshnium P, Tasaka Y. 1996. Biosynthesis of gamma-linolenic acid in the cyanobacterium Spirulina platensis. In Huang Y, Milles DE (Eds) Gamma-linolenic acid, metabolism and its role in nutrition and medicine, AOC Press, Champaign, Illinois, p. 22. https://doi.org/10.1201/9781439831939.ch3

Nelissen B, Wilmotte A, Neefs JM, De Wachter R. 1994. Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. Syst. App. Microbiol. 17, 206–210. https://doi.org/10.1016/S0723-2020(11)80009-3

Nigma D, Shukla G, Agarwal A. 1999. Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol. Lett. 106, 151–157. https://doi.org/10.1016/S0378-4274(99)00059-4

Özdemir G, Karabay NU, Dalay MC, Pazarbasi B. 2004. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother. Res. 18, 754–757. https://doi.org/10.1002/ptr.1541 PMid:15478198

Premkumar K, Abraham SK, Santhiya ST, Ramesh A. 2004. Protective effect of Spirulina fusiformis on chemical-induced genotoxicity. Fitoterapia 75, 24–31. https://doi.org/10.1016/j.fitote.2003.07.008 PMid:14693216

Premkumar K, Pachiappan A, Abraham SK, Santhiya ST, Gopinath PM, Ramesh A. 2001. Effect of Spirulina fusiformis on cyclophosphamide and mitomycin-C induced genotoxicity and oxidative stress in mice. Fitoterapia 72, 906–911. https://doi.org/10.1016/S0367-326X(01)00340-9

Rajesh V, Kala M. 2015. Antiproliferative and chemopreventive effect of Annona muricata Linn. on Ehrlich ascites carcinoma and Benzo[a]pyrene induced lung carcinoma. Orient. Pharm. Exp. Med. 15, 239–256. https://doi.org/10.1007/s13596-015-0199-1

Rangsayator N, Upatham ES, KruatrachureM, Pokethitiyook P, Lanza G. 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut. 119, 45–53. https://doi.org/10.1016/S0269-7491(01)00324-4

Rempel A, Machado T, Treichel H, Colla E, Margarites A, Colla L. 2018. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. Bioresour. Technol. 263, 163–171. https://doi.org/10.1016/j.biortech.2018.04.114 PMid:29738979

Romay C, Ledon N, Gonzalez R. 1998. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm. Res. 47, 334–338. https://doi.org/10.1007/s000110050338 PMid:9754867

Romay C, Ledon N, Gonzalez R. 2000. Effects of phycocyanin extract on prostaglandin E2 levels in mouse ear inflammation test. Arzneim -Forsch. 50, 1106–1109. PMid:11190776

Santoyo S, Herrero S, Se-orans M, Cifuentes F, Ibá-ez A. 2006. Functional characterization of pressurized liquid extracts of Spirulina platensis. Eur. Food Res. Technol. 224, 75–81. https://doi.org/10.1007/s00217-006-0291-3

Sarada DL, Kumar CS, Rengasamy R. 2011. Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: A novel and potent agent against drug resistant bacteria. World J. Microb. Biot. 27, 779–783. https://doi.org/10.1007/s11274-010-0516-2

Schmidt RA, Wiebe MG, Eriksen NT. 2005. Heterotrophic high cell density fed-batch cultures of the phycocyanin producing red alga Galdieria sulphuraria. Biotechnol. Bioeng. 90, 77–84. https://doi.org/10.1002/bit.20417 PMid:15723314

Schwartz J, Shklar G. 1987. Regression of experimental hamster cancer by beta carotene and algae extracts. J. Oral. Maxillofacial Surg. 5, 510–515. https://doi.org/10.1016/S0278-2391(87)80011-3

Schwartz J, Shklar G, Reid S, Trickler D. 1988. Prevention of experimental oral cancer by extracts of Spirulina- Dunaliella algae. Nutrition Cancer 11, 127–134. https://doi.org/10.1080/01635588809513979 PMid:3129701

Shao W, Ebaid R, Abomohra A, Shahen M. 2018. Enhancement of Spirulina biomass production and cadmium biosorption using combined static magnetic field. Bioresour. Technol. 265, 163–169. https://doi.org/10.1016/j.biortech.2018.06.009 PMid:29890441

Shastri D, Kumar MM, Kumar A. 1999. Modulation of lead toxicity by Spirulina fusiformis. Phytother. Res. 13, 258–260. https://doi.org/10.1002/(SICI)1099-1573(199905)13:3<258::AID-PTR438>3.0.CO;2-2

Simsek N, Karadeniz A, Kalkanc Y, Keles ON, Unal B. 2008. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats. J. Hazard. Mater. 164, 1304–1309. https://doi.org/10.1016/j.jhazmat.2008.09.041 PMid:18976856

Sloth JK, Wiebe MG, Eriksen NT. 2006. Accumulation of Phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzym. Microb. Technol. 38, 168–175. https://doi.org/10.1016/j.enzmictec.2005.05.010

Soni R, Sudhakar K, Rana R. 2016. Sustainable biomass production from microalgae for food, feed and biofuels: An integrated approach. Biosci. Biotech. Res. Comm. 9, 729–736.

Soni R, Sudhakar K, Rana R. 2017. Spirulina – From growth to nutritional product: A review. Trends Food Sci. Technol.69, 157–171. https://doi.org/10.1016/j.tifs.2017.09.010

Sørensen L, Hantke A, Eriksen NT. 2013. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J. Sci. Food Agric. 93, 2933– 2938. https://doi.org/10.1002/jsfa.6116 PMid:23427028

Stizenberger E. 1854. Spirulina und Arthrospira (nov. gen.). Hedwigia 1, 32–41.

Subhashini J, Mahipal SK, Reddy MC, Reddy MM, Rachamallu A, Reddanna P. 2004. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line- K562. Biochem. Pharmacol. 68, 453–462. https://doi.org/10.1016/j.bcp.2004.02.025 PMid:15242812

Subudhi S, Kurdrid P, Hongsthong A, Sirijuntarut M, Cheevadhanarak S, Tanticharoen M. 2008. Isolation and functional characterization of Spirulina D6D gene promoter: Role of a putative GntR transcription factor in transcriptional regulation of D6D gene expression. Biochem. Biophys. Res. Commun. 365, 643–649. https://doi.org/10.1016/j.bbrc.2007.11.018 PMid:18022383

Sumprasit N, Wagle N, Glanpracha N, Annachhatre A. 2017. Biodiesel and biogas recovery from Spirulina platensis. Int. Biodeterior. Biodegrad. 119, 196–204. https://doi.org/10.1016/j.ibiod.2016.11.006

Tomaselli L. 1997. Morphology, Ultrastructure and Taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A, Spirulina platensis (Arthrospira) Physiology, cell-biology and biotechnology. Taylor & Francis Ltd., London.

Toyomizu M, Suzuki K, Kawata Y, Kojima H, Akiba Y. 2001a. Effective transformation of the cyanobacterium Spirulina platensis using electroporation. J. App. Phycol.13, 209–214. https://doi.org/10.1023/A:1011182613761

Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y. 2001b. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Bri. Poult. Sci. 42, 197–202. https://doi.org/10.1080/00071660120048447 PMid:11421328

Vachhani A, Vonshak A. 1997. Genetics of Spirulina. In: Vonshak A, Spirulina platensis (Arthrospira) Physiology, cell-biology and biotechnology. 1997, Taylor & Francis Ltd., London. PMid:9278334

Vázquez-Velasco M, González-Torres L, López-Gasco P, Bastida S, Benedí J, Sánchez-Reus M, González-Mu-oz M, Sánchez-Muniz F. 2014. Liver oxidation and inflammation in Fa/Fa rats fed glucomannan/Spirulina-surimi. Food Chem. 159, 215–221. https://doi.org/10.1016/j.foodchem.2014.03.015 PMid:24767047

Whitton BA. 2000. Soils and rice-fields. In: Whitton BA, Potts M, editor. The ecology of cyanobacteria. Kluwer Academic, Dordrecht, Netherlands, pp. 233–255. PMid:10704331

Xiong J, Kurade M, Jeon B. 2018. Can Microalgae Remove Pharmaceutical Contaminants from Water?. Trends Biotechnol. 36, 30–44. https://doi.org/10.1016/j.tibtech.2017.09.003 PMid:28993012




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es