Grasas y Aceites, Vol 70, No 2 (2019)

Chemical characterization, fatty acid profile and antioxidant activity of Gustavia macarenensis fruit mesocarp and its oil from the Amazonian region of Ecuador as an unconventional source of vegetable oil


https://doi.org/10.3989/gya.0569181

J. J. Reyes Mera
Departamento de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Ecuador
orcid http://orcid.org/0000-0001-6435-0649

R. Abreu-Naranjo
Departamento de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Ecuador
orcid http://orcid.org/0000-0003-1048-7126

J. M. Alvarez-Suarez
Facultad de Ingeniería y Ciencias Agropecuarias (FICA). Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED). Universidad de Las Américas, Ecuador
orcid http://orcid.org/0000-0001-8509-1498

D. Viafara
Departamento de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Ecuador
orcid http://orcid.org/0000-0003-1376-1231

Abstract


To our knowledge, this study is the first to report on the nutritional characterization, bioactive compounds and antioxidant activity of Amazonian G. macarenensis fruit. The fatty acid profile was determined using a high performance liquid chromatography analysis. The total phenolic content and antioxidant activity were determined using Folin Ciocalteu’s method and by radical scavenging activity, respectively. Moreover, a cluster analysis was carried out in order to classify the G. macarenensis fruit oil according to its fatty acid profile. Seven Fisher linear discriminant functions were obtained from the discriminant analysis. These models allow one to classify new fruits on the basis of their fatty acid profile. A high value for total lipids was obtained (53.57%). Its main components were palmitic and oleic acid. The TPC value (156.49 ± 2.62 mg GAE/Kg of oil) obtained from the G. macarenensis fruit pulp oil is higher than what was reported for some olive oil and Brazilian mango oil varieties.

Keywords


Antioxidant activity; Cluster analysis; Edible oils; Fatty acid profile; Gustavia macarenensis

Full Text:


HTML PDF XML

References


Andrade EHA, Zoghbi MDGB, Maia JGS, Fabricius H, Marx F. 2001. Chemical characterization of the fruit of Annona squamosa L. occurring in the Amazon. J. Food Compos. Anal. 14, 227–232. https://doi.org/10.1006/jfca.2000.0968

Astm-E1757-01 2007. Standard practice for preparation of biomass for compositional analysis.

Baiano A, Gambacorta G, Terracone C, Previtali M, Lamacchia C, La Notte E. 2009. Changes in phenolic content and antioxidant activity of Italian extra-virgin olive oils during storage. J. Food Sci. 74, C177-C183. https://doi.org/10.1111/j.1750-3841.2009.01072.x

Commission CA. 2008. Codex-Stan 210: codex standard for named vegetable oils. FAO, Rome, Italy.

Chang HC, Huang GJ, Agrawal DC, Kuo CL, Wu CR, Tsay HS. 2007. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as "Gusuibu". Botanical Studies, 48, 397–406

Charoenkiatkul S, Thiyajai P, Judprasong K. 2016. Nutrients and bioactive compounds in popular and indigenous durian (Durio zibethinus Murr.). Food Chem. 193, 181–186. https://doi.org/10.1016/j.foodchem.2015.02.107

Chow CK. 2007. Fatty acids in foods and their health implications, CRC press Taylor & Francis Group.

Devalaraja S, Jain S, Yadav H. 2011. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res. Int. 44, 1856–1865. https://doi.org/10.1016/j.foodres.2011.04.008 PMCid:PMC3156450

García D, Sotero V, Mancini D, Pavan Torres R, Mancini Filho J. 2011. Evaluación de la actividad antioxidante" In vivo" de tres frutos de la amazonía: Gustavia augusta L., Grias neuberthii Macbr y Theobroma bicolor. In spanish (Evaluation of the antioxidant activity "In vivo" of three fruits of the Amazon: Gustavia augusta L., Grias neuberthii Macbr and Theobroma bicolor). Rev. Soc. Quim. Peru, 77, 44–55.

Hemavathy J, Prabhakar JV. 1988. Lipid composition of chironji (Buchanania lanzan) kernel. J. Food Compos. Anal. 1, 366–370. https://doi.org/10.1016/0889-1575(88)90037-3

Ho LH, Bhat R. 2015. Exploring the potential nutraceutical values of durian (Durio zibethinus L.) – An exotic tropical fruit. Food Chem. 168, 80–89. https://doi.org/10.1016/j.foodchem.2014.07.020

Javanmardi J, Stushnoff C, Locke E, Vivanco JM. 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83, 547–550. https://doi.org/10.1016/S0308-8146(03)00151-1

Johnson EJ. 2002. The role of carotenoids in human health. Nutrition in Clinical Care 5, 56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x

Jørgensen P, León-Yánez S. 1999. Catalogue of the Vascular Plants of Ecuador. Monographs in Systematic Botany from the Missouri Botanical Garden 75, i-viii, 1–1181.

Kamel BS, Kakuda Y. 2007. Fatty acids in fruits and fruit products. Acids in Foods and Their Health Implications. 263–301. Taylor & Francis Group.

Mariod AA, Saeed Mirghani ME, Hussein I. 2017. Chapter 30 - Durio zibethinus (Durian). Unconventional Oilseeds and Oil Sources. Academic Press.

Mishra N, Dubey A, Mishra R, Barik, N. 2010. Study on antioxidant activity of common dry fruits. Food Chem. Toxicol. 48, 3316–3320. https://doi.org/10.1016/j.fct.2010.08.029

Moreiras O, Carbajal A, Cabrera L, Cuadrado C. 2013. Tablas de composición de alimentos, Madrid, Ediciones Pirámide.

Muhtadi, Primarianti AU, Sujono TA. 2015. Antidiabetic Activity of Durian (Durio Zibethinus Murr.) and Rambutan (Nephelium Lappaceum L.) Fruit Peels in Alloxan Diabetic Rats. Procedia Food Science 3, 255–261.

Nwaichi E, Chuku L, Oyibo N. 2015. Profile of ascorbic acid, beta-carotene and lycopene in guava, tomatoes, honey and red wine. International Journal of Current Microbiology and Applied Sciences 4, 39–43.

Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H. 2000. Olive-oil consumption and health: the possible role of antioxidants. The Lancet Oncology 1, 107–112. https://doi.org/10.1016/S1470-2045(00)00015-2

Pattnaik A, Sarkar R, Sharma A, Yadav KK, Kumar A, Roy P, Mazumder A, Karmakar S, Sen T. 2013. Pharmacological studies on Buchanania lanzan Spreng.-A focus on wound healing with particular reference to anti-biofilm properties. Asian Pacific J. Tropical Biomed. 3, 967–974. https://doi.org/10.1016/S2221-1691(13)60187-2

Pereira MG, Hamerski F, Andrade EF, Scheer ADP, Corazza ML. 2017. Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. J. Supercrit. Fluids 128, 338–348. https://doi.org/10.1016/j.supflu.2017.03.021

Pokorny J, Yanishlieva N, Gordon MH. 2001. Antioxidants in food: practical applications, CRC press.

Polychniatou V, Tzia C. 2018. Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions. Food Chem. 240, 1146–1153. https://doi.org/10.1016/j.foodchem.2017.08.044

Porra RJ. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73, 149–156. https://doi.org/10.1023/A:1020470224740

Prance GT, Mori SA. 1979. Lecythidaceae-Part I. The actinomorphic-flowered New World Lecythidaceae (Asteranthos, Gustavia, Grias, Allantoma & Cariniana). Flora Neotropica Mon. No. 21, 270 pp. Notes of anatomical literature and original work on leaf surface (SEM) and petiole anatomy.

Puri A, Sahai R, Singh KL, Saxena RP, Tandon JS, Saxena KC. 2000. Immunostimulant activity of dry fruits and plant materials used in indian traditional medical system for mothers after child birth and invalids. J. Ethnopharmacol. 71, 89–92. https://doi.org/10.1016/S0378-8741(99)00181-6

Radice M, Viafara D, Neill D, Asanza M, Sacchetti G, Guerrini A, Maietti S. 2014. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. J. Oleo Sci. 63, 1243–50. https://doi.org/10.5650/jos.ess14007

Ramos AS, Souza RO, Boleti APDA, Bruginski ER, Lima ES, Campos FR, Machado MB. 2015. Chemical characterization and antioxidant capacity of the araca-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res. Int. 75, 315–327. https://doi.org/10.1016/j.foodres.2015.06.026

Ribeiro S, Barbosa L, Queiroz J, Knödler M, Schieber A. 2008. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 110, 620–626. https://doi.org/10.1016/j.foodchem.2008.02.067

Rocha Ribeiro SM, Queiroz JH, Lopes Ribeiro De Queiroz ME, Campos FM, Pinheiro Sant'ana HM. 2007. Antioxidant in Mango (Mangifera indica L.) Pulp. Plant Foods for Human Nutrition, 62, 13–17. https://doi.org/10.1007/s11130-006-0035-3

Shailasree S, Ruma K, Prakash HS. 2012. Curative properties of Buchanania lanzan: As evaluated by its anti-oxidant, anti-inflammatory and DNA protective properties. J. Nat. Pharm. 3, 71. https://doi.org/10.4103/2229-5119.102748

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Srdic-Rajic T, Konic Ristic A. 2016. Antioxidants: Role on Health and Prevention. Encyclopedia of Food and Health. Oxford: Academic Press.

Tanilgan K, Özcanb MM, Ünverb A. 2007. Physical and chemical characteristics of five Turkish olive (Olea europea L.) varieties and their oils. Grasas Aceites 58, 142–147.

Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es