Optimization and evaluation of wheat germ oil extracted by supercritical CO2


  • Shao Tong Jiang School of Biotechnology and Food Engineering, Hefei University of Technology
  • LiYa Niu School of Biotechnology and Food Engineering, Hefei University of Technology




Defatted wheat germ, Response surface methodology, Supercritical carbon dioxide extraction, Wheat germ oil


Box-Behnken design combined with response surface methodology (RSM) was used to optimize the parameters of supercritical CO2 extraction (SFE) of wheat germ oil. The quality of the oil and residual meal obtained by SFE and solvent extraction (SE) were evaluated from proximate analysis, fatty acid composition and antioxidant activity. A maximum oil yield of 10.46% was achieved under the optimal conditions of wheat germ particle size 60-80 mesh; water content 4.37%; pressure 30MPa; temperature 40°C extraction time 1.7h. The oil obtained by SFE showed stronger DPPH radical scavenging ability than SE oil at the same concentration. The fatty acid composition of SFE oil was similar to SE oil. Higher contents of protein (34.3%) and lysine (2.47g/100g) were found in the residual meal obtained by SFE. The results show that oil and defatted meal obtained by SFE can be promising nutritional sources for food.


Download data is not yet available.


AOCS. 2009. Methods and recommended practices of the AOCS. American Oil Chemists Society, USA.

Arshad, M., Anjum, F., Zahoor, T.2007. Nutritional assessment of cookies supplemented with defatted wheat germ. Food Chem 102, 123-128. doi:10.1016/j.foodchem.2006.04.040

AACC. 2004. Approved Methods of the AACC. American Association of Cereal Chemists, 10th ed., Approved Medthod Committee,St Paul, MN.

Eisenmenger, M., Dunford, N. 2008. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. J. Am. Oil Chem. Soc. 85, 55-61. doi:10.1007/s11746-007-1163-0

Eisenmenger, M., Dunford, N., Eller, F., Taylor, S., Martinez, J. 2006. Pilot-scale supercritical carbon dioxide extraction and fractionation of wheat germ oil. J. Am. Oil Chem. Soc. 83, 863-868. doi:10.1007/s11746-006-5038-6

Ge, Y., Sun, A., Ni, Y., Cai, T. 2000. Some nutritional and functional properties of defatted wheat germ protein. J. Agric. Food Chem. 48, 6215-6218. doi:10.1021/jf000478m PMid:11141279

Ge, Y., Sun, A., ni, Y., Cai, T. 2001. Study and development of a defatted wheat germ nutritive noodle. Eur. Food Res. Technol. 212, 344-348. doi:10.1007/s002170000253

Ge, Y., Yan, H., Hui, B., ni, Y., Wang, S., Cai, T. 2002. Extraction of natural vitamin E from wheat germ by supercritical carbon dioxide. J. Agric. Food Chem. 50, 685-689. doi:10.1021/jf010615v PMid:11829628

Gelmez, N., Kincal, N., Yener, M. 2009. Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents, and antioxidant activities of the extracts. J. Super Fluids. 48, 217-224. doi:10.1016/j.supflu.2008.11.002

Lee, J., Chung, H., Chang, P., Lee, J. 2007. Development of a method predicting the oxidative stability of edible oils using 2, 2-diphenyl-1-picrylhydrazyl (DPPH). Food Chem. 103, 662-669. doi:10.1016/j.foodchem.2006.07.052

Matteuzzi, D., Swennen, E., Rossi, M., Hartman, T., Lebet, V. 2004. Prebiotic effects of a wheat germ preparation in human healthy subjects. Food Microbiol. 21, 119-124. doi:10.1016/S0740-0020(03)00009-1

Panfili, G., Cinquanta, L., Fratianni, A., Cubadda, R. 2003. Extraction of wheat germ oil by supercritical CO2: Oil and defatted cake characterization. J. Am. Oil Chem. Soc. 80, 157-161. doi:10.1007/s11746-003-0669-1

Piras, A., Rosa, A., Falconieri, D., Porcedda, S., Dess, M., Marongiu, B.2009. Extraction of oil from wheat germ by supercritical CO2. Molecules 14, 2573. doi:10.3390/molecules14072573 PMid:19633624

Schuler, P. 1990. Natural Antioxidants Exploited Commercially, Food Antioxidants. Edited by B. Hudson, Elsevier.

Shao, P., Sun, P.L., Ying, Y.J. 2008. Response surface optimization of wheat germ oil yield by supercritical carbon dioxide extraction. Food Bioprod. Process 86 (C3), 227-231. doi:10.1016/j.fbp.2007.04.001

Wang, T., Johnson, L. 2001. Refining high-free fatty acid wheat germ oil. J. Am. Oil Chem. Soc. 78, 71-76. doi:10.1007/s11746-001-0222-2

Wei, Z., Liao, A., Zhang, H., Liu, J., Jiang, S. 2009. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technol. 100, 4214-4219. doi:10.1016/j.biortech.2009.04.010 PMid:19414250

Zacchi, P., Daghero, J., Jaeger, P., Eggers, R. 2006. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide. Braz J. Chem. Eng. 23, 105-110. doi:10.1590/S0104-66322006000100011

Zhang, S., Zu, Y., Fu, Y., Luo, M., Liu, W., Li, J., Efferth, T.2010. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresource Technol. 101, 2537-2544. doi:10.1016/j.biortech.2009.11.082 PMid:20022744

Zhu, K.X., Zhou, H.M., Qian, H.F. 2006. Proteins extracted from defatted wheat germ: Nutritional and structural properties. Cereal Chem. 83, 69-75. doi:10.1094/CC-83-0069




How to Cite

Jiang ST, Niu L. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. grasasaceites [Internet]. 2011Jun.30 [cited 2022Dec.1];62(2):181-9. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1315