Phospholipid classes and fatty acid composition of ewe’s and goat’s milk


  • L. Zancada Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca
  • F. Pérez-Díez Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca
  • F. Sánchez-Juanes Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca
  • J. M. Alonso Departamento de Bioquímica, Biología Molecular y Fisiología, Escuela Universitaria de Ingenierías Agrarias de Soria, Universidad de Valladolid
  • L. A. García-Pardo Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León
  • P. Hueso Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca



Bacterial adhesion, Fatty acid, Goat milk, Ovine milk, Phospholipid


The content, distribution of individual species, and the fatty acid composition of phospholipids (PL) from ewe’s and goat’s milk were analyzed. The binding of enterotoxigenic and uropathogenic Escherichia coli strains to PL and the inhibition of bacterial hemagglutination by PL were addressed using high performance thin-layer chromatography-overlay assays and microtiter plates, respectively. Ovine and caprine milk contained more PL than bovine milk but less than human milk. The profile of individual PL was similar, including sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol in both ovine and caprine milk. Regarding the fatty acid composition, a high content of long-chain fatty acids (more than C16) and unsaturated fatty acids, with C18:1 as the most abundant was found in ovine and caprine milk PL. Ovine milk has longer and less saturated fatty acids while caprine milk has shorter and more saturated ones. Neither the adhesion of any bacterial strains assayed to the individual PL from ovine or caprine milk nor the inhibition of bacterial hemagglutination by PL were observed. These are important constituents of the milk fat globule membrane, but it seems that they do not play a role in the defence of new-borns against bacteria if the results obtained are taken into account.


Download data is not yet available.


Astaire JC, Ward R, German JB, Jimenez-Flores R. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 86, 2297-2307.

Bitman J, Wood DL.1990. Changes in milk fat phospholipids during lactation. J. Dairy Sci. 73, 1208-1216.

Boyazoglu J, Morand-Fehr P. 2001. Mediterranean dairy sheep and goat products and their quality. A critical review. Small Rum. Res. 40, 1-11.

Boyd LC, Drye NC, Hansen AP. 1999. Isolation and characterization of whey phospholipids. J Dairy Sci. 82, 2550-2557.

Cerbulis J, Parks OW, Farrell HM, JR. 1983. Fatty acid composition of polar lipids in goats' milk. Lipids 18, 55-58. PMid:6835035

Dewettinck K, Rombaut R, Thienpont N, Trung Le T, Messens K, Camp JV. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18, 436-457.

Duan RD, Nilsson Å. 2009. Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62-72. PMid:19027789

Evans DG, Evans DJ. 1978. New surface-associated heat-labile colonization factor antigen (CFA/II) produced by enterotoxigenic Escherichia coli of serogroups O6 and O8. Infect. Immun. 21, 638-647. PMid:80383 PMCid:422040

Guineé PA, Veldkamp J, Jansen WH. 1977. Improved Minca medium for the detection of K99 antigen in calf enterotoxigenic strains of Escherichia coli. Infect. Immun. 15, 676-678. PMid:321358 PMCid:421422

Karlsson KA, Stromberg N. 1987. Overlay and solidphase analysis of glycolipid receptors for bacteria and viruses. Methods Enzymol. 138, 220-232.

Küllenberg D, Taylor LA, Schneider M, Massing U. 2012. Health effects of dietary phospholipids. Lipids Health Dis. 11, 3-18. PMid:22221489 PMCid:3316137

Kuksis A. 1992. Yolk lipids. Biochim. Biophys. Acta 1124, 205-222.

Lock AL, Bauman DE. 2004. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39, 1197-1206. PMid:15736916

Michaelidou AM. 2008. Factors influencing nutritional and health profile of milk and milk products, Small Rum. Res. 79, 42-50.

Miura S, Tanaka M, Suzuki A, Sato K. 2004. Application of phospholipids extracted from bovine milk to the reconstitution of cream using butter oil. J. Am. Oil Chem. Soc. 81, 97-100.

Morin P, Jiménez-Flores R, Pouliot Y. 2007. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J. 17, 1179-1187.

Morrison WR. 1968. The distribution of phospholipids in some mammalian milks. Lipids 3, 101-103. PMid:17805851

Morrison WR, Smith LM. 1967. Fatty acid composition of milk phospholipids. II. Sheep, Indian buffalo and human milks. Lipids 2, 178-182. PMid:17805746

Park YW, Juárez M, Ramos M, Haenlein GFW. 2007. Physico-chemical characteristics of goat and sheep milk. Small Rum. Res. 68, 88-113.

Rabasco A, González ML. 2000. Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites 51, 74-96.

Raynal-Ljutovac K, Lagriffoul G, Paccard P, Guillet I, Chilliard Y. 2008. Composition of goat and sheep milk products: An update. Small Rum. Res. 79, 57-72.

Rombaut R, Dewettinck K. 2006. Properties, analysis and purification of milk polar lipids. Int. Dairy J. 16, 1362-1373.

Rouser G, Fleischer S, Yamamoto A. 1970. Two dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494-496. PMid:5483450

Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P. 2009a. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int. Dairy J. 19, 273-278.

Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P. 2009b. Glycosphingolipids from bovine milk and milk fat globule membranes; a comparative study. Adhesion to enterotoxigenic Escherichia coli strains. Biol. Chem. 390, 31-40. PMid:18937626

Sánchez-Yagüe J, Llanillo M. 1986. Lipid composition of subcellular particles from sheep platelets. Location of phosphatidylethanolamine and phosphatidylserine in plasma membrane and platelet liposomes. Biochim. Biophys. Acta 856, 193-201.

Spence AJ, Jiménez-Flores R, Quian M, Goddik L. 2009. Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. J. Dairy Sci. 92, 2373-2381. PMid:19447969

Sprong RC, Hulstein MFE, Van der Meer R. 2002. Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J. 12, 209-215.

Thompson AK, Singh H. 2006. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. J. Dairy Sci. 89, 410-419.

Vanier MT, Holm M, Ohman R, Svennerholm L. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18, 581-592. PMid:5581573

Zancada L, Sánchez-Juanes F, Alonso JM, Hueso P. 2010. Neutral glycosphingolipid content of ovine milk. J. Dairy Sci. 93, 19-26.




How to Cite

Zancada L, Pérez-Díez F, Sánchez-Juanes F, Alonso JM, García-Pardo LA, Hueso P. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. grasasaceites [Internet]. 2013Jun.30 [cited 2021Sep.19];64(3):304-10. Available from: