Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435
DOI:
https://doi.org/10.3989/gya.1180142Keywords:
Biocat alysis, Bubble column reactor, Esterification, Immobilized enzyme, Lipase, Oligoglycerol fatty acid estersAbstract
Oli goglycerol fatty acid esters (OGEs) are an important kind of polyglycerol fatty acid esters (PGEs) which have been widely used as emulsifiers in food, medicine and cosmetic industries. The aim of this study was to investigate the preparation of OGEs by the esterification of olig oglycerol with linoleic acid in a solvent- free system using Lipozyme 435 as the catalyst. The effects of substrate molar ratio, reaction time, reaction temperature, enzyme dosage, and water addition on the efficiency of esterification (EE) were studied. Single factor experiments and response surface methodology (RSM) were employed to optimize the reaction parameters. The optimum conditions were obtained as follows: reaction time 4.52 h, reaction temperature 90 °C, enzyme dosage 2 wt% (based on the total substrate mass), the molar ratio of oligoglycerol to linoleic acid 1.59:1 and no water addition. Under these conditions, the experimental EE (95.82±0.22%) fitted well with that predicted by RSM (96.15%). Similar results were obtained when the process was scaled up to a production of 500 g in a pilot bubble column reactor (BCR). The enzyme maintained 98.2% of the relative activity after 10 batches of reaction in the BCR. Electro spray ionization mass spectrum was employed to rapidly analyze the esterification products, and most species of OGEs have been identified.
Downloads
References
Andersen T, Holm A, Skuland IL, Trones R, Greibrokk T. 2003. Characterization of complex mixtures of polyglycerol fatty acid esters using temperature and solvent gradients in packed capillary LC. J. Sep. Sci. 26, 1133–1140. http://dx.doi.org/10.1002/jssc.200301538
Blasi F, Cossignani L, Simonetti MS, Damiani P. 2007. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzyme Microb. Tech. 41, 727–732. http://dx.doi.org/10.1016/j.enzmictec.2007.06.005
Byun HG, Eom TK, Jung WK, Kim SK. 2007. Lipase catalyzed production of monoacylglycerols by the esterification of fish oil fatty acids with glycerol. Biotechnol. Bioproc. E. 12, 491–496. http://dx.doi.org/10.1007/BF02931345
Brady C, Metcalfe L, Slaboszewski D, Frank D. 1988. Lipase immobilized on a hydrophobic microporous supports for the hydrolysis of fats. J. Am. Oil Chem. Soc. 65, 917–921. http://dx.doi.org/10.1007/BF02544510
Cassel S, Chaimbault P, Debaig C, Benvegnu T, Claude S, Plusquellec D, Rollin P, Lafosse M. 2001. Liquid chromatography of polyglycerol fatty esters and fatty ethers on porous graphitic carbon and octadecyl silica by using evaporative light scattering detection and mass spectrometry. J. Chromatog. A 919, 95–106. http://dx.doi.org/10.1016/S0021-9673(01)00801-9
Curschellas C, Kohlbrecher J, Geue T, Fischer P, Schmitt B, Rouvet M, Windhab EJ, Limbach HJ. 2013. Foams stabilized by multi lamellar polyglycerol ester self-assemblies. Langmuir 29, 38–49. http://dx.doi.org/10.1021/la3029116 PMid:23214931
Charlemagne D, Legoy MD. 1995. Enzymatic synthesis of polyglycerol-fatty acid esters in a solvent-free system. J. Am. Oil Chem. Soc. 72, 61–65. http://dx.doi.org/10.1007/BF02635780
Chowdary GV, Ramesh MN, Prapulla SG. 2000. Enzymic synthesis of isoamylisovalerate using immobilized lipase from Rhizomucormiehei: a multivariate analysis. Process Biochem. 36, 331–339. http://dx.doi.org/10.1016/S0032-9592(00)00218-1
Duan ZQ, Du W, Liu ZH. 2013. Improved synthesis of 1,3-diolein by Novozym 435 mediated esteri•cation of monoolein with oleic acid. J. Mol. Catal. B: Enzym. 89, 1–5. http://dx.doi.org/10.1016/j.molcatb.2012.12.003
Ding ZY, Hao AY, Wang ZN. 2007. Water-in-gasoline microemulsions stabilized by polyglycerol esters. Fuel 86, 597–602. http://dx.doi.org/10.1016/j.fuel.2006.07.028
Eom TK, Kong CS, Byun HG, Jung WK, Kim SK. 2010. Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45, 738–743. http://dx.doi.org/10.1016/j.procbio.2010.01.012
Freitas L, Perez VH, Santos JC, Castro de HF. 2007. Enzymatic synthesis of glyceride esters in solvent-free system: influence of the molar ratio, lipase source and functional activating agent of the support. J. Brazil. Chem. Soc. 18, 1360–1366. http://dx.doi.org/10.1590/s0103-50532007000700011
Grifin WC. 1954. Calculation of HLB values of non-ionic surfactants. J. Soc. Cosmet. Chem. 5, 249–256.
Khemchyan LL, Khokhlova EA, Seitkalieva MM, Ananikov VP. 2013. Efficient sustainable tool for monitoring chemical reactions and structure determination in ionic liquids by ESI-MS. Chemistry Open 2, 208–214. http://dx.doi.org/10.1002/open.201300022 PMid:24551568 PMCid:PMC3892193
Liu SC, Zhang CH, Hong PZ, Ji HW. 2007. Lipasecatalysedacylglycerol synthesis of glycerol and n-3 PUFA from tuna oil: optimisation of process parameters. Food Chem. 103, 1009–1015. http://dx.doi.org/10.1016/j.foodchem.2006.08.037
Márquez-Alvarez CM, Sastre E, Pérez-Pariente J. 2004. Solid catalysts for the synthesis of fatty esters of glycerol, polyglycerols and sorbitol from renewable resources. Top Catal. 27, 105–118. http://dx.doi.org/10.1023/B:TOCA.0000013545.81809.bd
Martin A, Richter M. 2011. Oligomerization of glycerol: a critical review. Eur. J. Lipid Sci. Tech. 113, 100–117. http://dx.doi.org/10.1002/ejlt.201000386
Mollenhauer T, Klemm W, Lauterbach M, Ondruschka B, Haupt J. 2010. Process engineering study of the homogenously catalyzed biodiesel synthesis in a bubble column reactor. Ind. Eng. Chem. Res. 49, 12390–12398. http://dx.doi.org/10.1021/ie101430w
Ortega S, Bódalo A, Bastida J, Máximo MF, Montiel MC, Gómez M. 2014. Optimized enzymatic synthesis of the food additive polyglycerolpolyricinoleate (PGPR) using Novozym 435 in a solvent free system. Biochem. Eng. J. 84, 91–97. http://dx.doi.org/10.1016/j.bej.2014.01.003
Ortega S, Máximo MF, Montiel MC, Murcia MD, Arnold G, Bastida J. 2013. Esteri•cation of polyglycerol with polycondensedricinoleic acid catalysed by immobilized Rhizopusoryzae lipase. Bioproc. Biosyst. Eng. 36, 1291–1302. http://dx.doi.org/10.1007/s00449-012-0874-2 PMid:23263570
Orfanakis A, Hatzakis E, Kanaki K, Pergantis SA, Rizos A, Dais P. 2013. Characterization of polyglycerolpolyricinoleate formulations using NMR spectroscopy, mass spectrometry and dynamic light scattering. J. Am. Oil Chem. Soc. 90, 39–51. http://dx.doi.org/10.1007/s11746-012-2137-4
Panpipat W, Xu XB, Guo Z. 2012. Towards a commercially potential process: Enzymatic recovery of phytosterols from plant oil deodorizer distillates mixture. Process Biochem. 47, 1256–1262. http://dx.doi.org/10.1016/j.procbio.2012.04.024
Pan QY, Yang LP, Meng XH. 2013. Optimization of enzymatic synthesis of tricaprylin in ionic liquids by response surface methodology. J. Am. Oil Chem. Soc. 90, 501–509. http://dx.doi.org/10.1007/s11746-012-2186-8
Richardson G, Bergenstahl B, Langton M, Stading M, Hermansson AM. 2004. The function of a crystalline emulsifiers on expanding foam surfaces. Food Hydrocolloid 18, 655–663. http://dx.doi.org/10.1016/j.foodhyd.2003.11.003
Souza MS, Aguieiras ECG, Silva da MAP, Langone MAP. 2009. Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Appl. Biochem. Biotech. 154, 253–267. http://dx.doi.org/10.1007/s12010-008-8444-4 PMid:19067243
Saitou K, Homma R, Kudo N, Katsuragi Y, Sato K. 2014. Retardation of crystallization of diacylglycerol oils using polyglycerol fatty acid esters. J. Am. Oil Chem. Soc. 91, 711–719. http://dx.doi.org/10.1007/s11746-014-2416-3
Shima M, Kobayashi Y, Kimura Y, Adachi S, Matsuno R. 2004. Effect of the hydrophilic surfactants on the preparation and encapsulation efficiency in course and fine W/O/W type emulsions. Colloids Surfaces A: Phys. 238, 83–90. http://dx.doi.org/10.1016/j.colsurfa.2004.02.018
Shimada Y, Watanabe Y, Sugihara A, Tominaga Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B: Enzym. 17, 133–142. http://dx.doi.org/10.1016/S1381-1177(02)00020-6
Takatori T, Shimono N, Higaki K, Kimura T. 2004. Evaluation of sustained release suppositories prepared with fatty base including solid fats with high melting points. Int. J. Pharm. 278, 275–282. http://dx.doi.org/10.1016/j.ijpharm.2004.03.030 PMid:15196632
Wang Y, Zhao MM, Ou SY, Xie LY, Tang SZ. 2009. Preparation of a diacylglycerol-enriched soybean oil by phosphalipase A1 catalyzed hydrolysis. J. Mol. Catal. B: Enzym. 56, 165–172. http://dx.doi.org/10.1016/j.molcatb.2008.07.008
Xiao YS, Wang Y, Zhang GW. 2012. Optimization of preparation of polyglycerol fatty acid ester catalyzed by Phospholipase A1 in a solvent free system using response surface methodology. Sci. Tech. Food Indus. 33, 191–194.
Yamagata Y, Iga K, Ogawa Y. 2000. Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids. J. Control Release, 63, 319–329. http://dx.doi.org/10.1016/S0168-3659(99)00206-0
Zou L, Akoh CC. 2013. Identification of tocopherols, tocotrienols, and their fatty acid esters in residues and distillates of structured lipids purified by short-path distillation. J. Agric. Food Chem. 61, 238–246. http://dx.doi.org/10.1021/jf304441j PMid:23241167
Zhong NJ, Gui ZY, Xu L, Huang JR, Hu K, Gao YQ, Zhang X, Xu ZB, Su JY, Li B. 2013. Solvent-free enzymatic synthesis of 1,3-diacylglycerols by direct esterification of glycerol with saturated fatty acids. Lipids Health Dis. 12, 12–65. http://dx.doi.org/10.1186/1476-511X-12-65 PMid:23656739 PMCid:PMC3680111
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.