Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress

Authors

  • C. Liang Qingdao University of Science & Technology
  • Y. Zhai Qingdao University of Science & Technology
  • D. Xu Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • N. Ye Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • X. Zhang Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Y. Wang Qingdao Agricultural University
  • W. Zhang Qingdao University of Science & Technology
  • J. Yu Qingdao University of Science & Technology

DOI:

https://doi.org/10.3989/gya.0708142

Keywords:

Carotenoid, Haematococcus pluvialis, Lipid production, Photosynthetic capacity, Stress conditions

Abstract


Recently, H. pluvialis has been demonstrated to have significant potential for biofuel production. To explore the correlation between total lipid content and other physiological parameters under s tress conditions, the responses of H. pluvialis to high light intensity (HL), nitrogen deprivation (-N), and high light intensity with nitrogen deprivation (HL-N) were investigated. The total lipid content in the control cells was 12.01% dw, whereas that of the cells exposed to HL, -N, and HL-N conditions was 56.92, 46.71, and 46.87% dw, respectively. The fatty acid profile was similar under all conditions, with the main components including palmitic acid, linoleic acid, and linolenic acid. A good correlation was found between individual carotenoid and total lipids, regardless of culture conditions. P hotosynthetic parameters and lipid content were also found to be well-correlated.

Downloads

Download data is not yet available.

References

Ahmad AL, Mat YNH, Derek CJC, Lim JK. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renew Sust. Energy Rev. 15, 584–593.

An ML, Mou SL, Zhang XW, Zheng Z, Ye NH, Wang DS, Zhang W, Miao JL. 2013. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour. Technol. 149, 77–83. http://dx.doi.org/10.1016/j.biortech.2013.09.027 PMid:24084208

Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust. Energy Rev. 16, 2070–2093.

Boussiba S, Vonshak A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32, 1077–1082.

Cerón MC, García-Malea MC, Rivas J, Acien FG, Fernández JM, Del Río E, Guerrero MG, Molina E. 2007. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl. Microb. Cell Physiol. 74, 1112–1119.

Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Advance 25, 294–306. http://dx.doi.org/10.1016/j.biotechadv.2007.02.001 PMid:17350212

Cifuentes AS, Gonzalez MA, Vargas S, Hoeneisen M, Gonzalez N. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36, 343–357. http://dx.doi.org/10.4067/S0716-97602003000300006 PMid:14631867

Courchesne NMD, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141, 31–41. http://dx.doi.org/10.1016/j.jbiotec.2009.02.018 PMid:19428728

Damiani MC, Popovich CA, Constenla D, Leonardi PI. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol. 101, 3801–3807. http://dx.doi.org/10.1016/j.biortech.2009.12.136 PMid:20117928

Ghasemi Y, Rasoul Amini S, Naseri AT, Montazeri Najafabady N. 2012. Microalgae Biofuel Potentials (Review). Appl. Biochem. Microbiol. 48, 126–144. http://dx.doi.org/10.1134/S0003683812020068

González-Fernández C, Sialve B, Bernet N, Steyer JP. 2012. Impact of microalgae characteristics on their conversion to biofuel. Biofuel Bioprod. Bior. 6, 105–113. http://dx.doi.org/10.1002/bbb.338

Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36, 269–74. http://dx.doi.org/10.1007/s10295-008-0495-6 PMid:18982369

Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493–507. http://dx.doi.org/10.1007/s10811-008-9392-7

Gustavs L, Eggert A, Michalik D, Karsten U.2010. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243, 3–14. http://dx.doi.org/10.1007/s00709-009-0060-9 PMid:19585217

Halim R. 2012. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv. 30, 709–732. http://dx.doi.org/10.1016/j.biotechadv.2012.01.001 PMid:22266377

Li Y, Horsman M, Wang B, Wu N, Lan CQ. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biot. 81, 629–636. http://dx.doi.org/10.1007/s00253-008-1681-1 PMid:18795284

Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew Sust. Energy Rev. 14, 217–232.

Mou SL, Xu D, Ye NH, Zhang XW, Liang CW, Liang Q, Zheng Z, Zhuang ZM, Miao J L. 2012. Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY 505/515. J. Appl. Phycol. 24, 1169–1176. http://dx.doi.org/10.1007/s10811-011-9746-4

Oxborough K, Hanlon A RM, Underwood GJC, Baker NC. 2000. In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthos cells using high resolution imaging of chlorophyll a fluorescence. Limnol Oceanogr. 43, 1207–1221.

Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, Beardall J.2008. State transitions and non-photochemical quenching during a nutrient induced fluorescence transient in phosphate starved Duniella Tertiolecta. J. Phycol. 44, 1204–1211. http://dx.doi.org/10.1111/j.1529-8817.2008.00585.x

Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biot. 94, 1495–1503. http://dx.doi.org/10.1007/s00253-012-3940-4 PMid:22361859

Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opin. Biotech. 19, 430–436. http://dx.doi.org/10.1016/j.copbio.2008.07.008 PMid:18725295

Sarada R, Vidhyavathi R, Usha D, Ravishankar GA. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54, 7585–7588. http://dx.doi.org/10.1021/jf060737t PMid:17002425

Solovchenko A, Merzlyak MN, Khozin-Goldberg I, Cohen Z, Boussiba S. 2010. Coordinated carotenoid and lipid syntheses induced in parietochloris incisa (chlorophyta, trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen stavation and high light. J. Phycol. 46, 763–772. http://dx.doi.org/10.1111/j.1529-8817.2010.00849.x

White S, Anandraj A, Bux F. 2011. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol. 102, 1675–82. http://dx.doi.org/10.1016/j.biortech.2010.09.097 PMid:20965719

Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N, Mou S, Liang C, Li D.2013. Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresour. Technol. 127, 386–390. http://dx.doi.org/10.1016/j.biortech.2012.09.068 PMid:23138061

Yong YYR, Lee YK. 1991. Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia 30, 257–261. http://dx.doi.org/10.2216/i0031-8884-30-3-257.1

Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z. 2002. Accumulation of oleic acid in haematococcus pluvilis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38, 325–331. http://dx.doi.org/10.1046/j.1529-8817.2002.01107.x

Published

2015-06-30

How to Cite

1.
Liang C, Zhai Y, Xu D, Ye N, Zhang X, Wang Y, Zhang W, Yu J. Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Grasas aceites [Internet]. 2015Jun.30 [cited 2025Jan.22];66(2):e077. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1542

Issue

Section

Research

Most read articles by the same author(s)