Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach


  • B. Rincón Instituto de la Grasa (CSIC)
  • M. González de Canales Instituto de la Grasa (CSIC)
  • A. Martín Departamento de Ingeniería Química y Química Inorgánica, Facultad de Ciencias, Universidad de Córdoba
  • R. Borja Instituto de la Grasa (CSIC)



Alperujo, Anaerobic digestion, Batch, Kinetics, Microwave


The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS-1 (MW1), 4830 kJ·kg TS-1 (MW2), 7170 kJ·kg TS-1 (MW3) and 7660 kJ·kg TS-1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded-1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR.


Download data is not yet available.


Altas L. 2009. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J. Hazard. Mater. 162, 1551–1556. PMid:18640779

APHA-AWWA-WPCF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. Washington, DC, USA.

Beszédes S, László Z, Szabó G, Hodúr C. 2011. Effects of microwave pretreatments on the anaerobic digestion of food industrial sewage sludge. Environ. Prog. Sustain. Energ. 30, 486–492.

Borja R, Raposo F, Rincón, B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32–46.

Carrère H, Sialve B, Bernet N. 2009. Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour. Technol. 100, 3690–3694. PMid:19251411

Donoso-Bravo A, Pérez-Elvira SI, Fernández-Polanco F. 2010. Application of simplified models for anaerobic biodegradability tests. Chem. Eng. J. 160, 607–614.

Eskicioglu C, Terzián N, Kennedy KJ, Droste RL, Hamoda M. 2007. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 41, 2457–2466. PMid:17451781

Fernández-Rodríguez MJ, Rincón B, Fermoso FG, Jiménez AM, Borja R. 2014. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresour. Technol. 157, 263–269. PMid:24561632

García-Sánchez M, Paradiso A, García-Romera I, Aranda E, De Pinto MC. 2014. Bioremediation of dry olive-mill residue removes inhibition of growth induced by this waste in tomato plants. Int. J. Environ. Sci. Technol. 11, 21–32.

Hendriks ATWM, Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18. PMid:18599291

Houtmeyers S, Appels L, Degrève J, Van Impe J, Dewil R. 2013. Comparing the influence of ultrasonic and microwave pre-treatment on the solubilisation and semi-continuous digestion of waste activated sludge. Proceedings of the Anaerobic Digestion Conference, Paper SPC21, Santiago de Compostela, Spain

Jackowiak D, Bassard D, Pauss A, Ribeiro T. 2011. Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour. Technol. 102, 6750–6756. PMid:21524906

Li L, Kong X, Yang F, Yuan Z, Sun Y. 2012. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Appl. Biochem. Biotechnol. 166, 1183–1191. PMid:22205322

Nielsen AM, Feilberg A. 2012. Anaerobic digestion of energy crops in batch. Biosyst. Eng. 112, 248–251.

Page LH, Ni JQ, Herber AJ, Moisier NS, Liu X, Joo HS, Ndegwa PM, Harrison JH. 2014. Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosyst. Eng. 118, 16–28.

Passos F, Solé M, García J, Ferrer I. 2013. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energ. 108, 168–175.

Pommier S, Chenu D, Quintard M, Lefebvre X. 2007. A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnol. Bioeng. 97, 473–482. PMid:17149769

Rincón B, Borja R, González JM, Portillo MC, Sáiz-Jiménez C. 2008a. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Eng. J. 40, 253–261.

Rincón B, Sánchez E, Raposo F, Borja R, Travieso L, Martín MA, Martín A. 2008b. Effect of the organic loading rate on the performance ofanaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manage. 28, 870–877. PMid:17482452

Rincón B, Borja R, Martín MA, Martín A. 2009. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolitic-acidogenic step. Waste Manage. 29, 2566–2573. PMid:19450962

Rincón B, Banks CJ, Heaven S. 2010. Biochemical Methane potential of winter wheat (Triticumaestivum L.): influence of growth stage and storage practice. Bioresour. Technol. 101, 8179–8184. PMid:20598879

Rincón B, Bujalance L, Fermoso FG, Martín A, Borja R. 2013a. Biochemical methane potential of two-phase olive mill solid waste: Influence of thermal pretreatment on the process kinetics. Bioresour. Technol. 140, 249–255. PMid:23707912

Rincón B, Portillo MC, González JM, Borja R. 2013b. Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue. Int. J. Environ. Sci. Technol. 10, 635–644.

Sapci Z, Morken J, Linjordet R. 2013. An investigation of the enhancement of biogas yields from lignocellulosic material using two pretreatment methods: Microwave irradiation and steam explosion. Bioresources 8, 1976–1985.

Shahriari H, Warith M, Hamoda M, Kennedy KJ. 2012. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manage. 32, 41–52. PMid:21945550

Solyom K, Mato RB, Pérez-Elvira SI, Cocero MJ. 2011. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour. Technol. 102, 10849–10854. PMid:21993329

Taherzadeh MJ, Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 99, 1621–1651. PMid:19325822 PMCid:PMC2635757

Toreci I, Droste RL, Kennedy KJ. 2011. Mesophilic anaerobic digestion with high-temperature microwave pretreatment and importance of inoculum acclimation. Water Environ. Res. 83, 549–559. PMid:21751714

Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597.

Zheng J, Kennedy KJ, Eskicioglu C. 2009. Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge. Environ. Technol. 30, 319–327. PMid:19492543



How to Cite

Rincón B, González de Canales M, Martín A, Borja R. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach. grasasaceites [Internet]. 2016Dec.30 [cited 2022Oct.8];67(4):e165. Available from: