Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius maculatus) commercialized in Cameroon
DOI:
https://doi.org/10.3989/gya.0335161Keywords:
Catfish, FTIR Spectroscopy, Lipid oxidation, Polyunsaturated fatty acids, RefrigerationAbstract
The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm-1 on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish.
Downloads
References
AFNOR. 1981. Recueil des Normes Françaises. Corps Gras, Graines Oléagineuses, Produit Dérivés, 2nd Édition, AFNOR, Paris, 1981.
AOAC. 2000. Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.
Bligh EC, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099 PMid:13671378
Campa-one LA, Roche LA, Salvadori VO, Mascheroni RH. 2006. Structural studies on unpackaged foods during their freezing and storage. J. Food Sci. 71, 218–226. https://doi.org/10.1111/j.1750-3841.2006.00030.x
Chaijan M, Benjakul S, Visessaguan W, Faustman C. 2006. Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chem. 99, 81–83. https://doi.org/10.1016/j.foodchem.2005.07.022
FAO. 2005. United Nations Food & Agriculture Organisation, Nutritional elements of Fish. FAO Rome.
GiménezB, Cómez-Guillén MC, Pérez-Mateos M, Montro P, Márquez-Ruiz G. 2011. Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chem. 124, 1393–1403. https://doi.org/10.1016/j.foodchem.2010.07.097
Guesnet P, Alexandri JM. 2005. Acides gras polyinsaturés du lait et développement du système nerveux central du nouveau né. Cah. Nutr. Diet 30, 109–116.
Guillén MD, Cabo N. 1999. Usefulness of the frequency data for the Fourier transfor infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem. 47, 709–719. https://doi.org/10.1021/jf9808123 PMid:10563958
Guillén MD, Cabo N. 1997. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1–11. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R
Guillén MD, Ruiz A, Cabo N. 2004. Study of the oxidative degradation of farmed salmon lipids by jeans of Fourier transform infrared spectroscopy. Influence of salting. J. Sci. Food Agric. 84, 1528–1534. https://doi.org/10.1002/jsfa.1811
Harris P, Tall J. 1994. Rancidity in Fish. In J.C. Allen & R.J. Hamilton (Eds.), Rancidity in Foods, 257–272. London, UK: Chapman.
Jiménez F, Carballo J. 2000. Capítulo IV: Aplicaciones del frío a la carne y productos cárnicos (pp. 293–313). In Coordinado por M. Lamúa (Ed.), Aplicación del frío a los alimentos (p. 350). Madrid: AMV Ediciones y Mundi Prensa.
Josephon DB, Lindsay RC. 1986. Enzymic generation of volatile aroma compounds from fresh fish. In Biogeneration of Aromas. Parliment TH, Croteau R, eds. ACS symposium series No. 317, American Chemical Society, Washington, DC, USA, 201–219. https://doi.org/10.1021/bk-1986-0317.ch017
Kanner J. 1994. Oxidative processes in meat and meat products: quality implications. Meat Sci. 36, 169–186. https://doi.org/10.1016/0309-1740(94)90040-X
Li LK, King AJ. 1999. Structural changes of rabbit myosin subfragment I altered by malondehyde, a byproduct of lipid oxidation. J. Agric. Food Chem. 47, 3124–3129. https://doi.org/10.1021/jf990028y PMid:10552619
Lazzari M, Chiantore O. 1999. Drying and oxidative degradation of linseed oils: Polym. Degrad. Stab. 65, 303–313. https://doi.org/10.1016/S0141-3910(99)00020-8
Leaf A, Weber PC. 1988. Cardiovascular effects of n-3 fatty acids. N. Engl. J. Med. 318, 549. https://doi.org/10.1056/NEJM198803033180905 PMid:3277056
Low LK, Ng. 1978. Determination of peroxide value. In H. Hasegawa (Ed.), Laboratory manual on analytical methods and procedures for fish and fish products (pp.C7.1-C7.3). Singapore: Marine Fisheries Research Department, Southeast Asian Fisheries Development Center.
Manat C, Soottawat B, Wonnop V, Cameron F. 2006. Changes of lipids in sardine (Sardinelle gibbosa) muscle during ices storage. Food Chem. 99, 83–91. https://doi.org/10.1016/j.foodchem.2005.07.022
Méndez-Bustabad O. 1999. Weight loss during freezing and the storage of frozen meat. J. Food Eng. 41, 1–11. https://doi.org/10.1016/S0260-8774(99)00065-5
Muik B, Lendi B, Molina-Diaz A, Valcarcel M, Ayora-Canada MJ. 2007. Two dimentional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and Fr-Raman spectroscopy. Anal. Chim. Acta 593, 54–67. https://doi.org/10.1016/j.aca.2007.04.050 PMid:17531824
Nawar WW. 1996. "Lipids", In: O.R. Fennema, Ed., Food Chemistry, Marcel Dekker, Inc., New York: 225–314.
Pacheco-Aguilar R, Lugo-Sanchez ME, Robles-Burgueno MR. 2000. Postmortem biochemical characteristic of Monterey sardine muscle stored at 0 °C. J. Food Sci. 65, 40–47. https://doi.org/10.1111/j.1365-2621.2000.tb15953.x
Peng L, Hua Y, Yingchun Z, Yang W, Dongqing B, Ruitong D, Xiaoqing R, Hongshun Y, Lizhen M. 2016. Influence of Washing and Cold Storage on Lipid and Protein Oxidation in Catfish (Clarias lazera) Surimi. J. Aquat. Food Prod. 25, 790–801. https://doi.org/10.1080/10498850.2014.931898
Pirini M, Gatta PP, Testi S, Trigari G, Monetti PG. 2000. Effect of refrigerated storage on muscle lipid quality of sea bass (Dicentrarchus labrax) fed on diets containing different levels of vitamin E. Food Chem. 68, 289–293. https://doi.org/10.1016/S0308-8146(99)00190-9
Roldan HA, Roura SI, Montecchia CL, Borla OP, Crupkin MC. 2005. Lipid changes in frozen stored fillets from pre- and postspawned hake (Merluccius hubbsi Marini). J. Food Biochem. 29, 187–204. https://doi.org/10.1111/j.1745-4514.2005.00006.x
Ross CF, Smith DM. 2006. Use of volatiles as indicators of lipid oxidation in muscle foods. Comp. Rev. Food Sci. Food Safety 5, 18–25. https://doi.org/10.1111/j.1541-4337.2006.tb00077.x
Setiowaty G, Che Man YB, Jinap S, Moh MH. 2000. Quantitative determinations of peroxide value in thermally oxidized palm olein by Fourier transform infrared spectroscopy. Phytochem. Anal. 11, 74–78. https://doi.org/10.1002/(SICI)1099-1565(200003/04)11:2<74::AID-PCA498>3.0.CO;2-E
Smith BC. 1998. The basics of infrared interpretation. In B.C. Smith (Ed.), Infrared spectral interpretation: A systematic approach (pp1-29). New York, USA: CRC Press, Inc.
Socol MCH, Oetterer M. 2003. Seafood as functional food. Braz. Arch. Biol. Techn. 46, 443–454. https://doi.org/10.1590/S1516-89132003000300016
Stone NJ. 1996. Fish consumption, Fish oils lipids and coronary heart disease. Circulation 94, 2337–2340. https://doi.org/10.1161/01.CIR.94.9.2337 PMid:8901708
Underland I. 2001. Lipid oxidation in fatty fish during processing and storage. In SC Kestin & P.D. Warris (Eds.). Farmed Fish Quality (Pp261-275). UK: Fishing News Books, Black Welle Science.
Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E. 2006. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 573, 459–465. https://doi.org/10.1016/j.aca.2006.05.034 PMid:17723561
Weber J, Bochi VC, Ribeiro CP, Victorio AM, Emanuelli T. 2008. Effect of different cooking methods on oxidation, proximate and fatty acid composition of Silver Catfish (Rhamdia quelen) fillets. Food Chem. 106, 140–146. https://doi.org/10.1016/j.foodchem.2007.05.052
Yerlikaya P, Gokoglu N. 2010. Inhibition effects of green tea and grape seed extracts on lipid oxidation in bonito fillets during frozen storage. Int. J. Food Sci. Technol. 45, 252–257. https://doi.org/10.1111/j.1365-2621.2009.02128.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.