Efecto del tiempo de refrigeración en la oxidación de lípidos y perfil de ácidos grasos del pez gato (Arius maculatus) comercializado en el Camerún

Autores/as

DOI:

https://doi.org/10.3989/gya.0335161

Palabras clave:

Ácidos grasos poliinsaturados, FTIR Spectroscopy, Oxidación de los lípidos, Pez gato, Refrigeración

Resumen


El efecto de la refrigeración a 4 °C durante 9 días sobre la calidad y estabilidad del aceite de pez gato se evaluó mediante el cambio en la composición de ácidos grasos por cromatografía de gases (CG), los índices analíticos comúnmente utilizados (acidez y peróxidos) así como mediante análisis por espectroscopia de infrarrojo por transformada de Fourier (FTIR). Los resultados mostraron que el deterioro de los lípidos, la hidrólisis y la oxidación ocurrieron durante el almacenamiento en frío (4 °C). La refrigeración indujo a lipolisis de triglicéridos por lipasas y fosfolipasas. También se vio afectada la composición de ácidos grasos, la pérdida progresiva de insaturación se controló mediante la disminución de la banda de absorbancia a 301cm-1 en los espectros FTIR y el valor más bajo se observó en el músculo a los 9 días de refrigeración. Los ácidos eicosapentaenoico C20:5ω3 (EPA) y docosahexaenoico C22:6ω3 (DHA) fueron los ácidos grasos poliinsaturados más afectados durante la refrigeración. Se encontró que la refrigeración durante menos de 5 días era la mejor condición para la conservación del pez gato.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AFNOR. 1981. Recueil des Normes Françaises. Corps Gras, Graines Oléagineuses, Produit Dérivés, 2nd Édition, AFNOR, Paris, 1981.

AOAC. 2000. Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.

Bligh EC, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099 PMid:13671378

Campa-one LA, Roche LA, Salvadori VO, Mascheroni RH. 2006. Structural studies on unpackaged foods during their freezing and storage. J. Food Sci. 71, 218–226. https://doi.org/10.1111/j.1750-3841.2006.00030.x

Chaijan M, Benjakul S, Visessaguan W, Faustman C. 2006. Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chem. 99, 81–83. https://doi.org/10.1016/j.foodchem.2005.07.022

FAO. 2005. United Nations Food & Agriculture Organisation, Nutritional elements of Fish. FAO Rome.

GiménezB, Cómez-Guillén MC, Pérez-Mateos M, Montro P, Márquez-Ruiz G. 2011. Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chem. 124, 1393–1403. https://doi.org/10.1016/j.foodchem.2010.07.097

Guesnet P, Alexandri JM. 2005. Acides gras polyinsaturés du lait et développement du système nerveux central du nouveau né. Cah. Nutr. Diet 30, 109–116.

Guillén MD, Cabo N. 1999. Usefulness of the frequency data for the Fourier transfor infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem. 47, 709–719. https://doi.org/10.1021/jf9808123 PMid:10563958

Guillén MD, Cabo N. 1997. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1–11. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R

Guillén MD, Ruiz A, Cabo N. 2004. Study of the oxidative degradation of farmed salmon lipids by jeans of Fourier transform infrared spectroscopy. Influence of salting. J. Sci. Food Agric. 84, 1528–1534. https://doi.org/10.1002/jsfa.1811

Harris P, Tall J. 1994. Rancidity in Fish. In J.C. Allen & R.J. Hamilton (Eds.), Rancidity in Foods, 257–272. London, UK: Chapman.

Jiménez F, Carballo J. 2000. Capítulo IV: Aplicaciones del frío a la carne y productos cárnicos (pp. 293–313). In Coordinado por M. Lamúa (Ed.), Aplicación del frío a los alimentos (p. 350). Madrid: AMV Ediciones y Mundi Prensa.

Josephon DB, Lindsay RC. 1986. Enzymic generation of volatile aroma compounds from fresh fish. In Biogeneration of Aromas. Parliment TH, Croteau R, eds. ACS symposium series No. 317, American Chemical Society, Washington, DC, USA, 201–219. https://doi.org/10.1021/bk-1986-0317.ch017

Kanner J. 1994. Oxidative processes in meat and meat products: quality implications. Meat Sci. 36, 169–186. https://doi.org/10.1016/0309-1740(94)90040-X

Li LK, King AJ. 1999. Structural changes of rabbit myosin subfragment I altered by malondehyde, a byproduct of lipid oxidation. J. Agric. Food Chem. 47, 3124–3129. https://doi.org/10.1021/jf990028y PMid:10552619

Lazzari M, Chiantore O. 1999. Drying and oxidative degradation of linseed oils: Polym. Degrad. Stab. 65, 303–313. https://doi.org/10.1016/S0141-3910(99)00020-8

Leaf A, Weber PC. 1988. Cardiovascular effects of n-3 fatty acids. N. Engl. J. Med. 318, 549. https://doi.org/10.1056/NEJM198803033180905 PMid:3277056

Low LK, Ng. 1978. Determination of peroxide value. In H. Hasegawa (Ed.), Laboratory manual on analytical methods and procedures for fish and fish products (pp.C7.1-C7.3). Singapore: Marine Fisheries Research Department, Southeast Asian Fisheries Development Center.

Manat C, Soottawat B, Wonnop V, Cameron F. 2006. Changes of lipids in sardine (Sardinelle gibbosa) muscle during ices storage. Food Chem. 99, 83–91. https://doi.org/10.1016/j.foodchem.2005.07.022

Méndez-Bustabad O. 1999. Weight loss during freezing and the storage of frozen meat. J. Food Eng. 41, 1–11. https://doi.org/10.1016/S0260-8774(99)00065-5

Muik B, Lendi B, Molina-Diaz A, Valcarcel M, Ayora-Canada MJ. 2007. Two dimentional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and Fr-Raman spectroscopy. Anal. Chim. Acta 593, 54–67. https://doi.org/10.1016/j.aca.2007.04.050 PMid:17531824

Nawar WW. 1996. "Lipids", In: O.R. Fennema, Ed., Food Chemistry, Marcel Dekker, Inc., New York: 225–314.

Pacheco-Aguilar R, Lugo-Sanchez ME, Robles-Burgueno MR. 2000. Postmortem biochemical characteristic of Monterey sardine muscle stored at 0 °C. J. Food Sci. 65, 40–47. https://doi.org/10.1111/j.1365-2621.2000.tb15953.x

Peng L, Hua Y, Yingchun Z, Yang W, Dongqing B, Ruitong D, Xiaoqing R, Hongshun Y, Lizhen M. 2016. Influence of Washing and Cold Storage on Lipid and Protein Oxidation in Catfish (Clarias lazera) Surimi. J. Aquat. Food Prod. 25, 790–801. https://doi.org/10.1080/10498850.2014.931898

Pirini M, Gatta PP, Testi S, Trigari G, Monetti PG. 2000. Effect of refrigerated storage on muscle lipid quality of sea bass (Dicentrarchus labrax) fed on diets containing different levels of vitamin E. Food Chem. 68, 289–293. https://doi.org/10.1016/S0308-8146(99)00190-9

Roldan HA, Roura SI, Montecchia CL, Borla OP, Crupkin MC. 2005. Lipid changes in frozen stored fillets from pre- and postspawned hake (Merluccius hubbsi Marini). J. Food Biochem. 29, 187–204. https://doi.org/10.1111/j.1745-4514.2005.00006.x

Ross CF, Smith DM. 2006. Use of volatiles as indicators of lipid oxidation in muscle foods. Comp. Rev. Food Sci. Food Safety 5, 18–25. https://doi.org/10.1111/j.1541-4337.2006.tb00077.x

Setiowaty G, Che Man YB, Jinap S, Moh MH. 2000. Quantitative determinations of peroxide value in thermally oxidized palm olein by Fourier transform infrared spectroscopy. Phytochem. Anal. 11, 74–78. https://doi.org/10.1002/(SICI)1099-1565(200003/04)11:2<74::AID-PCA498>3.0.CO;2-E

Smith BC. 1998. The basics of infrared interpretation. In B.C. Smith (Ed.), Infrared spectral interpretation: A systematic approach (pp1-29). New York, USA: CRC Press, Inc.

Socol MCH, Oetterer M. 2003. Seafood as functional food. Braz. Arch. Biol. Techn. 46, 443–454. https://doi.org/10.1590/S1516-89132003000300016

Stone NJ. 1996. Fish consumption, Fish oils lipids and coronary heart disease. Circulation 94, 2337–2340. https://doi.org/10.1161/01.CIR.94.9.2337 PMid:8901708

Underland I. 2001. Lipid oxidation in fatty fish during processing and storage. In SC Kestin & P.D. Warris (Eds.). Farmed Fish Quality (Pp261-275). UK: Fishing News Books, Black Welle Science.

Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E. 2006. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 573, 459–465. https://doi.org/10.1016/j.aca.2006.05.034 PMid:17723561

Weber J, Bochi VC, Ribeiro CP, Victorio AM, Emanuelli T. 2008. Effect of different cooking methods on oxidation, proximate and fatty acid composition of Silver Catfish (Rhamdia quelen) fillets. Food Chem. 106, 140–146. https://doi.org/10.1016/j.foodchem.2007.05.052

Yerlikaya P, Gokoglu N. 2010. Inhibition effects of green tea and grape seed extracts on lipid oxidation in bonito fillets during frozen storage. Int. J. Food Sci. Technol. 45, 252–257. https://doi.org/10.1111/j.1365-2621.2009.02128.x

Publicado

2017-03-30

Cómo citar

1.
Tenyang N, Womeni HM, Tiencheu B, Villeneuve P, Linder M. Efecto del tiempo de refrigeración en la oxidación de lípidos y perfil de ácidos grasos del pez gato (Arius maculatus) comercializado en el Camerún. Grasas aceites [Internet]. 30 de marzo de 2017 [citado 24 de febrero de 2025];68(1):e177. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1644

Número

Sección

Investigación