Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: Global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity





Amazon, Bacaba, Bioactive Compounds, Functional Food, Supercritical CO2


Bacaba is widely consumed by the Amazonian population, and is promising for the production of cooking oil. The objective of this research was to determine the parameters of bacaba oil extraction with supercritical CO2: the fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity of the extracted oil. Extractions of bacaba (Oenocarpus bacaba) oil were performed with supercritical CO2 at temperatures of 40 and 60 ºC, with pressures varying from 120 to 420 bar. The highest mass yield was 60.39 ± 0.72% on a dry basis, obtained in the isotherm of 60 °C and 420 bar. Oleic acid was the major compound. The Infrared spectroscopic profile showed the predominance of unsaturated fatty acids. The results indicate that bacaba oil presents good functional quality.


Download data is not yet available.


Abadio Finco FDB, Kammerer DR, Carle R, Tseng WH, Böser S, Graeve L. 2012. Antioxidant activity and characterization of phenolic compounds from bacaba (Oenocarpus bacaba Mart.) Fruit by HPLC-DAD-MSn. J. Agric. Food Chem. 60, 7665–7673. https://doi.org/10.1021/jf3007689 PMid:22788720

Albuquerque MLS, Guedes I, Alcantara P, Moreira SGC. 2003. Infrared absorption spectra of Buriti (Mauritia flexuosa L.) oil. Vib. Spectrosc. 33, 127–131. https://doi.org/10.1016/S0924-2031(03)00098-5

Anwar F, Zreen Z, Sultana B, Jamil A. 2013. Enzyme-aided cold pressing of flaxseed (Linum usitatissimum L.): Enhancement in yield, quality and phenolics of the oil. Grasas Aceites 64, 463–471. https://doi.org/10.3989/gya.132212

American Oil Chemists' Society (2009). Official methods and recommended practices of the AOCS. Champaign, USA.

Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. 2012. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol. 25, 24–33. https://doi.org/10.1016/j.tifs.2011.12.002

Batista CCR, De Oliveira MS, Araújo ME, Rodrigues AMC, Botelho JRS, Souza Filho APS, Machado NT, Carvalho Junior RN. 2015. Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids 107, 364–369. https://doi.org/10.1016/j.supflu.2015.10.006

Caligiuri SPB, Aukema HM, Ravandi A, Guzman R, Dibrov E, Pierce GN. 2014. Flaxseed Consumption Reduces Blood Pressure in Patients With Hypertension by Altering Circulating Oxylipins via an -Linolenic Acid-Induced Inhibition of Soluble Epoxide Hydrolase. Hypertension 64, 53–59. https://doi.org/10.1161/HYPERTENSIONAHA.114.03179 PMid:24777981

Cândido TLN, Silva MR, Agostini-Costa TS. 2015. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 177, 313–319. https://doi.org/10.1016/j.foodchem.2015.01.041 PMid:25660891

Carvalho Junior RN, Moura LS, Rosa PTV, Meireles MAA. 2005. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract's global yield, composition, and antioxidant activity. J. Supercrit. Fluids 35, 197–204. https://doi.org/10.1016/j.supflu.2005.01.009

da Costa WA, de Oliveira MS, da Silva MP, Cunha VMB, Pinto RHH, Bezerra FWF, Junior RNC. 2017. Açaí (Euterpe oleracea) and Bacaba (Oenocarpus bacaba) as Functional Food in: Superfood and Functional Food - An Overview of Their Processing and Utilization. (Ed.) InTech, p. 60.

de Melo MMR, Silvestre AJD, Silva CM. 2014. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 92, 115–176. https://doi.org/10.1016/j.supflu.2014.04.007

Frankel EN. 2010. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58, 5991–6006. https://doi.org/10.1021/jf1007677 PMid:20433198

Gawlik-Dziki U. 2012. Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds. J. Funct. Foods 4, 872–882. https://doi.org/10.1016/j.jff.2012.06.004

Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF, Mendes RL. 2007. Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 101, 717–723. https://doi.org/10.1016/j.foodchem.2006.02.027

Gupta C, Prakash D. 2014. Phytonutrients as therapeutic agents. J. Complem. Integr. Med. 11, 151–169. https://doi.org/10.1515/jcim-2013-0021 PMid:25051278

Li X, Zhu H, Shoemaker CF, Wang SC. 2014. The Effect of Different Cold Storage Conditions on the Compositions of Extra Virgin Olive Oil. J. Am. Oil Chem. Soc. 91, 1559– 1570. https://doi.org/10.1007/s11746-014-2496-0

Mendonça MS, Araújo MGP. 1999. A semente de bacaba (Oenocarpus bacaba Mart Arecaceae): aspectos morfológicos. Rev. Bras. Sementes. 21, 122–124. https://doi.org/10.17801/0101-3122/rbs.v21n1p122-124

Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H. 2013. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biol. 11, 13–15. https://doi.org/10.1371/journal.pbio.1001513 PMid:23526882 PMCid:PMC3602010

Oliveira PD, Rodrigues AMC, Bezerra CV, Silva LHM. 2017. Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 215, 369–376. https://doi.org/10.1016/j.foodchem.2016.07.165 PMid:27542488

Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, Da Costa CEF. 2011. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresour. Technol. 102, 5873–5877. https://doi.org/10.1016/j.biortech.2011.02.022 PMid:21411317

Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. 2006. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 50, 1030–1038. https://doi.org/10.1002/mnfr.200600067 PMid:17039458

Peng DY, Robinson DB. 1976. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 15, 59–64. https://doi.org/10.1021/i160057a011

Rodrigues AMC, Darnet SH, Silva LH. 2010. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 21, 2000-2004. https://doi.org/10.1590/S0103-50532010001000028

Sales-Campos H, Reis De Souza P, Peghini BC, Santana J, Silva D, Cardoso CR. 2013. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini-Rev. Med. Chem. 13, 1–10.

Santos OV, Corrêa NCF, Soares FSM, Gioielli La, Costa CEF, Lannes SCS. 2012. Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes. Food Res. Int. 47, 253–258. https://doi.org/10.1016/j.foodres.2011.06.038

Santos OV, Corrêa NCF, Carvalho Junior RN, Costa CEF, França LFF, Lannes SCS. 2013. Comparative parameters of the nutritional contribution and functional claims of Brazil nut kernels, oil and defatted cake. Food Res. Int. 51, 841–847. https://doi.org/10.1016/j.foodres.2013.01.054

Santos-Silva J, Bessa RJ, Santos-Silva F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 77, 187–194. https://doi.org/10.1016/S0301-6226(02)00059-3

Shahidi F, Zhong Y. 2010. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 39, 4067–79. https://doi.org/10.1039/b922183m PMid:20617249

Silverstein MR, Webster X, Francis KJD. 2005. Spectrometric Identification of Organic Compounds, 7th ed. ed, Organic Chemistry. N. York.

Ulbricht TLV, Southgate DAT. 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985–992. https://doi.org/10.1016/0140-6736(91)91846-M



How to Cite

Pinto RH, Sena C, Santos OV, da Costa WA, Rodrigues AM, Carvalho Junior RN. Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: Global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity. grasasaceites [Internet]. 2018Jun.30 [cited 2021Dec.5];69(2):e246. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1713