Extracción de aceite de bacaba (Oenocarpus bacaba) con CO2 supercrítico: Isotermas de rendimiento global, composición de ácidos grasos, calidad funcional, estabilidad oxidativa, perfil espectroscópico y actividad antioxidante
DOI:
https://doi.org/10.3989/gya.0883171Palabras clave:
Alimentos funcionales, Amazonas, Bacaba, CO2 supercrítico, Compuestos bioactivosResumen
La bacaba es muy consumida por la población amazónica, constituyendo una promesa para una producción de aceite de cocina. El objetivo de esta investigación es determinar parámetros de la extracción de aceite de bacaba con CO2 supercrítico, la composición de ácidos grasos, evaluar su calidad funcional, la estabilidad oxidativa, el perfil espectroscópico y la actividad antioxidante del aceite. Las extracciones de aceite de bacaba (Oenocarpus bacaba) se realizaron con CO2 supercrítico a temperaturas de 40 y 60 ºC y presiones de 120 a 420 bar. El mayor rendimiento en masa fue de 60.39 ± 0.72% en base seca, obtenido en la isoterma de 60 °C y 420 bar. El ácido oleico fue el compuesto mayoritario. El perfil espectroscópico infrarrojo mostró el predominio de ácidos grasos no saturados. Los resultados indicaron que el aceite de bacaba presenta buena calidad funcional.
Descargas
Citas
Abadio Finco FDB, Kammerer DR, Carle R, Tseng WH, Böser S, Graeve L. 2012. Antioxidant activity and characterization of phenolic compounds from bacaba (Oenocarpus bacaba Mart.) Fruit by HPLC-DAD-MSn. J. Agric. Food Chem. 60, 7665–7673. https://doi.org/10.1021/jf3007689 PMid:22788720
Albuquerque MLS, Guedes I, Alcantara P, Moreira SGC. 2003. Infrared absorption spectra of Buriti (Mauritia flexuosa L.) oil. Vib. Spectrosc. 33, 127–131. https://doi.org/10.1016/S0924-2031(03)00098-5
Anwar F, Zreen Z, Sultana B, Jamil A. 2013. Enzyme-aided cold pressing of flaxseed (Linum usitatissimum L.): Enhancement in yield, quality and phenolics of the oil. Grasas Aceites 64, 463–471. https://doi.org/10.3989/gya.132212
American Oil Chemists' Society (2009). Official methods and recommended practices of the AOCS. Champaign, USA.
Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. 2012. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol. 25, 24–33. https://doi.org/10.1016/j.tifs.2011.12.002
Batista CCR, De Oliveira MS, Araújo ME, Rodrigues AMC, Botelho JRS, Souza Filho APS, Machado NT, Carvalho Junior RN. 2015. Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids 107, 364–369. https://doi.org/10.1016/j.supflu.2015.10.006
Caligiuri SPB, Aukema HM, Ravandi A, Guzman R, Dibrov E, Pierce GN. 2014. Flaxseed Consumption Reduces Blood Pressure in Patients With Hypertension by Altering Circulating Oxylipins via an -Linolenic Acid-Induced Inhibition of Soluble Epoxide Hydrolase. Hypertension 64, 53–59. https://doi.org/10.1161/HYPERTENSIONAHA.114.03179 PMid:24777981
Cândido TLN, Silva MR, Agostini-Costa TS. 2015. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 177, 313–319. https://doi.org/10.1016/j.foodchem.2015.01.041 PMid:25660891
Carvalho Junior RN, Moura LS, Rosa PTV, Meireles MAA. 2005. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract's global yield, composition, and antioxidant activity. J. Supercrit. Fluids 35, 197–204. https://doi.org/10.1016/j.supflu.2005.01.009
da Costa WA, de Oliveira MS, da Silva MP, Cunha VMB, Pinto RHH, Bezerra FWF, Junior RNC. 2017. Açaí (Euterpe oleracea) and Bacaba (Oenocarpus bacaba) as Functional Food in: Superfood and Functional Food - An Overview of Their Processing and Utilization. (Ed.) InTech, p. 60.
de Melo MMR, Silvestre AJD, Silva CM. 2014. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 92, 115–176. https://doi.org/10.1016/j.supflu.2014.04.007
Frankel EN. 2010. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58, 5991–6006. https://doi.org/10.1021/jf1007677 PMid:20433198
Gawlik-Dziki U. 2012. Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds. J. Funct. Foods 4, 872–882. https://doi.org/10.1016/j.jff.2012.06.004
Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF, Mendes RL. 2007. Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 101, 717–723. https://doi.org/10.1016/j.foodchem.2006.02.027
Gupta C, Prakash D. 2014. Phytonutrients as therapeutic agents. J. Complem. Integr. Med. 11, 151–169. https://doi.org/10.1515/jcim-2013-0021 PMid:25051278
Li X, Zhu H, Shoemaker CF, Wang SC. 2014. The Effect of Different Cold Storage Conditions on the Compositions of Extra Virgin Olive Oil. J. Am. Oil Chem. Soc. 91, 1559– 1570. https://doi.org/10.1007/s11746-014-2496-0
Mendonça MS, Araújo MGP. 1999. A semente de bacaba (Oenocarpus bacaba Mart Arecaceae): aspectos morfológicos. Rev. Bras. Sementes. 21, 122–124. https://doi.org/10.17801/0101-3122/rbs.v21n1p122-124
Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H. 2013. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biol. 11, 13–15. https://doi.org/10.1371/journal.pbio.1001513 PMid:23526882 PMCid:PMC3602010
Oliveira PD, Rodrigues AMC, Bezerra CV, Silva LHM. 2017. Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 215, 369–376. https://doi.org/10.1016/j.foodchem.2016.07.165 PMid:27542488
Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, Da Costa CEF. 2011. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresour. Technol. 102, 5873–5877. https://doi.org/10.1016/j.biortech.2011.02.022 PMid:21411317
Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. 2006. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 50, 1030–1038. https://doi.org/10.1002/mnfr.200600067 PMid:17039458
Peng DY, Robinson DB. 1976. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 15, 59–64. https://doi.org/10.1021/i160057a011
Rodrigues AMC, Darnet SH, Silva LH. 2010. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 21, 2000-2004. https://doi.org/10.1590/S0103-50532010001000028
Sales-Campos H, Reis De Souza P, Peghini BC, Santana J, Silva D, Cardoso CR. 2013. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini-Rev. Med. Chem. 13, 1–10.
Santos OV, Corrêa NCF, Soares FSM, Gioielli La, Costa CEF, Lannes SCS. 2012. Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes. Food Res. Int. 47, 253–258. https://doi.org/10.1016/j.foodres.2011.06.038
Santos OV, Corrêa NCF, Carvalho Junior RN, Costa CEF, França LFF, Lannes SCS. 2013. Comparative parameters of the nutritional contribution and functional claims of Brazil nut kernels, oil and defatted cake. Food Res. Int. 51, 841–847. https://doi.org/10.1016/j.foodres.2013.01.054
Santos-Silva J, Bessa RJ, Santos-Silva F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 77, 187–194. https://doi.org/10.1016/S0301-6226(02)00059-3
Shahidi F, Zhong Y. 2010. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 39, 4067–79. https://doi.org/10.1039/b922183m PMid:20617249
Silverstein MR, Webster X, Francis KJD. 2005. Spectrometric Identification of Organic Compounds, 7th ed. ed, Organic Chemistry. N. York.
Ulbricht TLV, Southgate DAT. 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985–992. https://doi.org/10.1016/0140-6736(91)91846-M
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.