Diazole and triazole derivatives of castor oil extract: synthesis, hypoglycemic effect, antioxidant potential and antimicrobial activity


  • F. Taieb Brahimi Département de classe préparatoire, Ecole Supérieure en Génie Electrique et Energétique d’Oran - Laboratoire de Synthèse Organique Bioactive, Département de Chimie Organique Industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran https://orcid.org/0000-0002-9460-8193
  • F. Belkhadem Laboratoire de Synthèse Organique Bioactive, Département de Chimie Organique Industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran https://orcid.org/0000-0002-7113-7798
  • B. Trari Laboratoire scientifique et technique régional de police ORAN https://orcid.org/0000-0001-7997-3638
  • A. A. Othman Laboratoire de Synthèse Organique Bioactive, Département de Chimie Organique Industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran https://orcid.org/0000-0001-8116-4506




Anti diabetic, Antimicrobial, Antioxidant, Castor oil, Extraction, Heterocycle


The ricinoleate triglyceride was extracted from castor-oil seeds grown in Algeria and isolated by catalytically methanolyse to methyl ricinoleate. Six diazole and triazole derivatives of ricinoleic acid were synthesized and characterized: 1,3,4-oxadiazole-5-thione (4); 1,3,4-thiadiazole-5-thione (5); 4-N-amino-1,2,4-triazole-5-thiol (7); 1,2,4-triazole-5-thione (9); 5-amino-1,3,4-oxadiazole (10) and 5-amino-1,3,4-thiadiazole (11). The antibacterial and antifungal screening data of synthesized compounds showed appreciable inhibition and among them, 5, 7 and 8 showed more inhibition on Gram positive Enterococcus faecalis than reference ampiciline; while compounds 1, 7, 8, 10 and 11 showed competitive antifungal effects compared to reference amphotericin B. In addition, all synthesized compounds (1-11) showed competitive antioxidant properties, particularly compounds 7 at 125, 250, 500 and 1000 μg/mL and compounds 4, 5 and 9 at a concentration of 1000 μg/mL. The intermediate compounds 1, 2 and 8 showed anti-α-amylase activity at various concentrations in the range of IC50 = (120.25 ± 1.17 - 130.42 ± 2.48). Oxadiazole 4 showed the best α-amylase inhibition by 78.5% at a concentration of 1000 μg/mL.


Download data is not yet available.


Adegboye AA, Khan KM, Salar U, Aboaba SA, Chigurupati S. 2018. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem. 150, 248-260. https://doi.org/10.1016/j.ejmech.2018.03.011 PMid:29533872

Ahmad A, Varshney H, Rauf A, Sherwani A, Owais M. 2017. Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4- triazol-3-thione and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. Arab. J. Chem. 10, S3347-S3357. https://doi.org/10.1016/j.arabjc.2014.01.015

Akhabue C, Okwundu OS. 2017. Monitoring the transesterification reaction of oil and methanol by ultraviolet visible spectroscopy. Biofuels 10, 1-8. https://doi.org/10.1080/17597269.2017.1338128

Barbuceanu SF, Ilies DC, Saramet G. 2014. Synthesis and Antioxidant Activity: Evaluation of New Compounds from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing Diarylsulfone and 2,4-Difluorophenyl Moieties. Int. J. Mol. Sci. 15, 10908-10925. https://doi.org/10.3390/ijms150610908 PMid:24941252 PMCid:PMC4100188

Belkhadem F, Ali Othman A. 2017. Synthesis and antibacterial evaluation of new N- and S-glycosides analogues with Dinitrophenyl-Substituted heterocyclic bases. Mol. Divers. 21, 115-124. https://doi.org/10.1007/s11030-016-9704-9 PMid:27761763

Bianchi L, Pirola C, Boffito DC, Di Fronzo A, Garvoli G. 2011. Non Edible Oils: Raw Materials for sustainable Biodiesel. In Margarita S, Gisela M (Ed.). Biodiesel. Feedstocks and Processing Technologies, 978-953-307-713. https://doi.org/10.5772/25397

Cao X, Sun Z, Cao Y, Wang R, Cai T. 2014. Design, synthesis, and structured activity relationship studies of novel fused heterocyclic-linked triazoles with good activity and water solubility. J. Med. Chem. 57, 3687-3706. https://doi.org/10.1021/jm4016284 PMid:24564525

Dos Santos DS, Piovesan LA, D'Oca CR, Hack CR, Treptow TG. 2015. Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorg. Med. Chem. 23, 340 - 347. https://doi.org/10.1016/j.bmc.2014.11.019 PMid:25510639

Dutta S, Karak N. 2005. Synthesis, characterization of poly(urethane amide) resins from Nahar seed oil for surface coating applications. Prog. Org. Coat. 53, 147-152. https://doi.org/10.1016/j.porgcoat.2005.02.003

Gad El-Karim IA, Amine MS. 2013. Fatty Acids in Heterocyclic Synthesis. Part XIV: Synthesis of Surface Active Agents from Some Novel Class of Oxadiazole, Thiadiazole and Triazole. Derivatives Having Microbiological Activities. J. Surfactants Deterg. 17, 509-523. https://doi.org/10.1007/s11743-013-1530-9

Ghosh S, Tiwari S, Srivastava S. 2013. Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 192, 259-267. https://doi.org/10.1016/j.vetpar.2012.09.031 PMid:23084038

Godard A, De caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z. 2013. New environmentally friendly oxidative scission of oleic acid. J.A.O.C.S. 90, 133-140. https://doi.org/10.1007/s11746-012-2134-7

Imankulov N. 2012. Preparation and research on properties of castor oil as a diesel fuel additive. Appl. Technol. Innov. 6, 30-37. https://doi.org/10.15208/ati.2012.4

Joshi D, Uttam A, Pansurya K. 2017. Synthesis and molecular modeling studies of novel pyrrole analogs as antimycobacterial agents. J. Saudı Chem. Soc. 21, 42-57. https://doi.org/10.1016/j.jscs.2013.09.002

Kumar KA, Subhash MA, Gomathi Priya G. 2017. Soxhlet extraction of Spirogyra sp. algae: an alternative fuel. Biofuels 8, 29-35. https://doi.org/10.1080/17597269.2016.1196328

Lavanya C, Murthy IY, Nagaraj G, Mukta N. 2012. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Bıomass Bıoenerg. 39, 204-209. https://doi.org/10.1016/j.biombioe.2012.01.008

Li R, Ning X, Shuo Z, Lin Z, Wu X. 2018. Discovery and Structure-activity relationship of novel 4- hydroxythiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators. Eur. J. Med. Chem. 143, 48-65. https://doi.org/10.1016/j.ejmech.2017.11.023 PMid:29172082

Menteşe E, Ülker S, Kahveci B. 2014. Synthesis and study of α-glucosidase inhibitory, antimicrobial and antioxidant activities of some benzimidazole derivatives containing triazole, thiadiazole, oxadiazole, and morpholine rings. Chem. Heterocycl. Compd. 50, 12. https://doi.org/10.1007/s10593-015-1637-1

Mubofu EB. 2016. Castor oil as a potential renewable resource for the production of functional materials. Sustain. Chem. Process. 4 (11). https://doi.org/10.1186/s40508-016-0055-8

Nakarmi A, Joshi S. 2014. A Study on Castor Oil and Its Conversion into Biodiesel by Transesterification Method. N.J.S.T. 15, 45- 52. https://doi.org/10.3126/njst.v15i1.12009

Rachapudi BNP, Bhamidipati VSK. 2017. Chemical Derivatization of Castor Oil and Their Industrial Utilization. In Moghis A (Ed.). Fatty Acids: Chemistry, Synthesis and Applications. A.O.C.S. 8, 279-303. https://doi.org/10.1016/B978-0-12-809521-8.00008-8

Soliman H, Basuny AM. 2015. Utilisation of stearic acid extracted from olive pomace for production of triazole, thiadiazole and thiadiazines derivatives of potential biological activities. J. Oleo Sci. 9, 1019-1032. https://doi.org/10.5650/jos.ess14261 PMid:26250422

Taieb Brahimi F, Belkadi M, Ali Othman A. 2017. Synthesis of nonionic surfactants with azoles ring bearing N- glycosides and their antibacterial activity. Arab. J. Chem. 10, 1690-1698. https://doi.org/10.1016/j.arabjc.2013.06.016

Thames SF, Yu H, Wang MD. 2006. Air-dry primer coatings from dehydrated lesquerella oil. Ind. Crops Prod. 6, 169. https://doi.org/10.1016/S0926-6690(96)00214-2

Trevino AS, Trumb DL. 2002. Aceto-acetylated castor oil in coatings applications. Prog. Org. Coat. 44, 49-54. https://doi.org/10.1016/S0300-9440(01)00223-5

Trochain. 1930. Le Ricin. Rev. Bot. Appl. Agric. Colon . 105, 299-308. https://doi.org/10.3406/jatba.1930.4860

Vijayalaxmi S, Jayalakshmi SK, Sreeramulu K. 2015. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. J. Food Sci. Technol. 52, 2761- 2769. https://doi.org/10.1007/s13197-014-1295-9 PMid:25892773 PMCid:PMC4397302

Witchard M. 1997. Paclobutrazol is Phloem Mobile in Castor Oil Plant (Ricinus communis L). J. Plant Growth Regul. 16, 215-217. https://doi.org/10.1007/PL00006999

Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. 2012. Grape Seed and Tea Extracts and Catechin 3-Gallates Are Potent Inhibitors of α-Amylase and α-Glucosidase Activity. J. Agric. Food Chem. 60, 8924-8929. https://doi.org/10.1021/jf301147n PMid:22697360 PMCid:PMC4356113



How to Cite

Taieb Brahimi F, Belkhadem F, Trari B, Othman AA. Diazole and triazole derivatives of castor oil extract: synthesis, hypoglycemic effect, antioxidant potential and antimicrobial activity. grasasaceites [Internet]. 2020Dec.4 [cited 2022Nov.30];71(4):e378. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1849