Inoculation with acetic acid bacteria improves the quality of natural green table olives




Acetobacter pasteurianus, Aerobic fermentation, Lactobacillus plantarum, Mix starter, Natural table olives, Saccharomyces cerevisiae


This study aims to develop a method for the preparation of natural table olives using locally selected microorganisms and without resorting to the usual techniques which employ lye treatment and acids. The effects of parameters, such as lye treatment, inoculation with yeasts, substitution of organic acids with vinegar and/or acetic acid bacteria, and finally alternating aeration have been assessed. Four different combinations were applied to the “Picholine marocaine” olive variety using indigenous strains, namely Lactobacillus plantarum S1, Saccharomyces cerevisiae LD01 and Acetobacter pasteurianus KU710511 (CV01) isolated respectively from olive brine, Bouslikhen dates and Cactus. Two control tests, referring to traditional and industrial processes, were used as references. Microbial and physicochemical tests showed that the L3V combination (inoculated with A. pasteurianus KU710511 and L. plantarum S1 under the optimal growth conditions of the Acetic Acid Bacteria (AAB) strain with 6% NaCl) was found to be favorable for the growth of the Lactic Acid Bacteria (LAB) strain which plays the key role in olive fermentation. This result was confirmed by sensory evaluation, placing L3V at the top of the evaluated samples, surpassing the industrial one where a chemical debittering treatment with lye was used. In addition, alternating aeration served to increase the microbial biomass of both AAB and LAB strains along with Saccharomyces cerevisiae LD01 strain, but also to use lower concentration of NaCl and to reduce the deterioration of olives compared to the anaerobic fermentation process. Finally, a mixed starter containing the three strains was prepared in a 10-L Lab-fermenter from the L3V sample in order to improve it in subsequent studies. The prepared starter mixture could be suitable for use as a parental strain to prepare table olives for artisan and industrial application in Morocco.


Download data is not yet available.


Amer A, Faiz ul-Hassan N, Kashfa B, Aasia B. 2017. Microbial β-Glucosidase: Sources, Production and Applications. J. Appl. Env. Microbiol 5, 31- 46.

Anon. 2016. International olive council. Conclusions IOC Conf. COP22. Available at: http://www. 2016news/787-conclusions-of-the-ioc-conference-at-cop22?lang=fr_FR [Accessed July 20, 2017].

Beuchat LR. 1992. Media for detecting and enumerating yeasts and moulds. Int. J. Food Microbiol. 17, 145-158.

Bobillo M, Marshall VM. 1991. Effect of salt and culture aeration on lactate and acetate production by Lactobacillus plantarum. Food Microbiol. 8, 153-160.

Bousmaha L, El Yachioui M, Ouhssine M. 2010. Amélioration du procédé de fermentation traditionnelle des olives vertes. Afrique Sci. Rev. Int. des Sci. Technol. 5, 114–125.

Campus M, Degirmencioglu N, Comunian R. 2018. Technologies and trends to improve table olive quality and safety. Front. Microbiol. 9.

Chemonics International, Inc. 2007. Guide De Bonnes Pratiques De Fabrication Des Olives De Table, Agriculture and Agrobusiness Intégrés, USAID-Maroc, Repport n. 071, pp.1-42.

Ciafardini G, Zullo BA. 2019. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 80, 103250.

Cleenwerck I, De Vos P. 2008. Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int. J. Food Microbiol. 125, 2-14

Colmagro S, Collins G, Sedgley M. 2001. Processing Technology of the Table Olive. in Jules J, (Ed.) Horticultural Reviews. John Wiley and Sons, Inc, pp. 235-242.

Degirmencioglu N. 2016. Modern Techniques in the Production of Table Olives. in Boskou D, Clodoveo ML, (Ed.) Products from Olive Tree. IntechOpen, pp. 215–234.

El-Khaloui M, Nouri A. 2007. Procédés d’élaboration des olives de table à base des variétés Picholine marocaine et Dahbia. Transfert de Technologie en Agriculture 037, 77–80.

El-Khaloui M, Rahmani M. 2012. Ypicité des préparations traditionnelles d’olives de table dans la province d’Ouazzane. Transfert de Technologie en Agriculture 197, 1–5.

Fan L, Hansen LT. 2012. Fermentation and biopreservation of plant-based foods with lactic acid bacteria. Handb. Plant-Based Fermented Food Beverage Technol. Second Ed., 35-48.

Faid M. (n.d.). Beware of eating red olives / Mohamed Faid - YouTube. Retrieved April 6, 2020, from

Fernandez Escobar R, de la Rosa R, Leon L. 2013. Evolution and sustainability of the olive production systems. Options Méditerranéennes. Séries A Mediterr. Semin. 106, 11-41.

Hammoucha J, Taleb O. 2017. Contribution à l’amélioration des conditions de fermentation des olives de table. Institut Agronomique et Vétérinaire Hassan II, Rabat. Maroc

Heperkan D. 2013. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 4, 1-11.

KailisS, HarrisDJ. 2007. Producingtableolives, Landlinks Press.

Kavroulakis N, Ntougias S. 2011. Bacterial and β-proteobacterial diversity in Olea europaea var. mastoidis- and O. europaea var. koroneiki-generated olive mill wastewaters: Influence of cultivation and harvesting practice on bacterial community structure. World J. Microb. Biotechnol. 27 (1), 57-66.

Lanza B. 2013. Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Front. Microbiol. 4, 1-7.

Makras L, De Vuyst L. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16, 1049-1057.

Man JC de, Rogosa M, Sharpe ME. 1960. A edium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23, 130-135.

Marsilio V, Campestre C, Lanza B. 2001. Phenolic compounds change during California-style ripe olive processing. Food Chem. 74, 55-60.

Mounir M, Fauconnier ML, Afechtal M, Thonart P, Ismaili Alaoui M, Delvigne F. 2018. Aroma profile of pilot plant-scale produced fruit vinegar using a thermo-tolerant Acetobacter pasteurianus strain isolated from Moroccan cactus. Acetic Acid Bact. 7, 1-11.

Mounir M, Belgrire M, Lahnaoui S, Hamouda A, Thonart P, Delvigne F, Ismaili Alaoui M. 2016a. Maîtrise de la fermentation alcoolique sous stress éthanolique, thermique et osmotique de la souche Saccharomyces cerevisiae YSDN1 en vue de la préparation du vinaigre de fruits. Rev. Marocaine Sci. Agron. Vétérinaires 4, 86-95.

Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Thonart P, Delvigne F, Ismaili Alaoui M. 2016b. Optimization of biomass production of Acetobacter pasteurianus KU710511 as a potential starter for fruit vinegar production. African J. Biotechnol. 15, 1429-1441.

Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Ismaili Alaoui M, Thonart P. 2016c. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. J. Biosci. Bioeng. 121, 166-171.

Pino A, De Angelis MD, Todaro A, Van Hoorde KV, Randazzo CL, Caggia C. 2018. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 9.

Rababah T. 2019. Sensory properties of green table olives prepared by different fermentation processes. CYTA - J. Food 17, 997-1005.

Ramírez E, Medina E, García P, Brenes M, Romero C. 2017. Optimization of the natural debittering of table olives. LWT - Food Sci. Technol. 77, 308- 313.

Rokni Y, Ghabbour N, Chihib NE, Thonart P, Asehraou A. 2015. Physico-chemical and microbiological characterization of the natural fermentation of moroccan picholine green olives variety. J. Mater. Environ. Sci. 6, 1740-1751.

Rincón-Llorente B. 2018. Table olive wastewater: Problem, treatments and future strategy. A review. Front. Microbiol. 9.

Sánchez Gómez AH, García García P, Rejano Navarro L. 2006a. Trends in table olive production Elaboration of table olives. Grasas Aceites 57 (1), 86-94.

Shahidi F, Kiritsakis A eds. 2017. Olives and Olive Oil as Functional Foods, John Wiley & Sons, Ltd, Chichester, UK.

Sheen HT, Kahler HL. 1938. Effect of ions on Mohr method for chloride determination. Ind. Eng. Chem. Anal. Ed. 10, 628-629.

Tayoub G, Sulaiman H, Hassan AH, Alorfi M. 2012. Determination of Oleuropein in leaves and fruits of some Syrian olive varieties. Int. J. Med. Aromat. Plants 2, 428-433.

Valero A, Medina E, Arroyo-López FN. 2017. Microbial hazards and their implications in the production of table olives. in Singh O V, (Ed.) Foodborne Pathogens and Antibiotic Resistance. John Wiley & Sons, Inc, pp. 119-138.

Zaragoza J, Bendiks Z, Tyler C, Kable ME, Williams TR, Luchkovska Y, Chow E, Boundy-Mills K, Marco ML. 2017. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations. MSphere 2, 1-14.



How to Cite

Mounir M, Hammoucha J, Taleb O, Afechtal M, Hamouda A, Ismaili Alaoui M. Inoculation with acetic acid bacteria improves the quality of natural green table olives. grasasaceites [Internet]. 2021Jun.7 [cited 2021Sep.16];72(2):e407. Available from: