Application of mixed starter culture for table olive production

Authors

DOI:

https://doi.org/10.3989/gya.0220201

Keywords:

Controlled fermentation, Mixed starter cultures, Table olive

Abstract


The fermentation of olives is usually carried out spontaneously by natural microbiota. Spontaneous fermentation has some disadvantages, such as the formation of defects in the end product due to the activities of undesirable microorganisms. The use of starter cultures could be a promising option to provide a more controlled fermentation environment and to reduce the risk of spoilage. Mixed starter culture use (generally selected Lactobacillus strains with or without yeasts) could reduce pH in a shorter time, producing a higher amount of lactic acid and enhancing microbial safety compared to fermentation with starter cultures containing single species or natural fermentation. Their use could also enhance the organoleptical properties of table olives. Particularly the use of yeast (such as strains of W. anomolus, S. cerevisiae) in the fermentation of olives, in combination or sequentially with lactic acid bacteria could result in an increase in volatile compounds and a more aromatic final product.

Downloads

Download data is not yet available.

References

Adebo OA, Njobeh PB, Adeboye AS, Adebiyi JA, Sobowale SS, Ogundele OM, Kayitesi E. 2018. Advances in fermentation technology for novel food products, in Panda SK and Shetty PH (Ed.) Innovations in Technologies for Fermented Food and Beverage Industries, Springer, Cham, pp. 71- 87.

Aktan N, Kalkan H. 1999. Sofralık Zeytin Teknolojisi. Ege Üniversitesi Basimevi, Bornova, Izmir, Turkey.

Angelis M de, Campanella D, Cosmai L, Summo C, Rizzello CG, Caponio F. 2015. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 52, 18-30.

Aponte M, Blaiotta G, La Croce F, Mazzaglia A, Farina V, Settanni L, Moschetti G. 2012. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 30, 8-16.

Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291.

Argyri AA, Nisiotou AA, Mallouchos A, Panagou EZ, Tassou CC. 2014. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. Int. J. Food Microbiol. 171, 68-76.

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189-196.

Arroyo-López F, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García- García P, Querol A, Garrido-Fernández A. 2012a. Potential benefits of the application of yeast starters in table olive processing. Front. Microbiol. 3, 1-4.

Arroyo-López F, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García- García P, Querol A, Garrido-Fernández A. 2012b. Yeasts in table olive processing: desirable or spoilage microorganisms? Int. J. Food Microbiol. 160, 42-49.

Bellis P de, Valerio F, Sisto A, Lonigro SL, Lavermicocca P. 2010. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 140, 6-13.

Benítez-Cabello A, Rodríguez-Gómez F, Morales M, Garrido-Fernández A, Jiménez-Díaz R, Arroyo- López F. 2019. Lactic Acid Bacteria and Yeast Inocula Modulate the Volatile Profile of Spanish- Style Green Table Olive Fermentations. Foods 8, 280.

Bevilacqua A, Beneduce L, Sinigaglia M, Corbo MR. 2013. Selection of yeasts as starter cultures for table olives. J. Food Sci. 78, 742-751.

Bevilacqua A, De Stefano F, Augello S, Pignatiello S, Sinigaglia M, Corbo M. 2015. Biotechnological innovations for table olives. Int. J. Food Sci. Nutr. 66, 127-131.

Blana VA, Grounta A, Tassou CC, Nychas GJE, Panagou, EZ. 2014. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol. 38, 208-218.

Bonatsou S, Benítez A, Rodríguez-Gómez F, Panagou EZ, Arroyo-López, FN. 2015. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiol. 46, 66-73.

Bonatsou S, Tassou CC, Panagou EZ, Nychas GJE. 2017. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 5, 30.

Boskou G, Salta FN, Chrysostomou S, Mylona A, Chiou A, Andrikopoulos, NK. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 94, 558-564.

Boskou D, Camposeo S, Clodoveo ML. 2015. Table olives as sources of bioactive compounds, in Boskou D (Ed.) Olive and Olive Oil Bioactive Constituents, AOCS Press, Urbana, pp. 217-259.

Botta C, Cocolin L. 2012. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and-independent approaches. Front. Microbiol. 3, 245.

Cagno R di, Surico RF, Siragusa S, De Angelis M, Paradiso A, Minervini F, De Gara L, Gobbetti M. 2008. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. Int. J. Food Microbiol. 127, 220-228.

Campus M, Sedda P, Cauli E, Piras F, Comunian R, Paba A, Daga E, Schirru S, Angioni A, Zurru R, Bandino G. 2015. Evaluation of a single strain starter culture, a selected inoculum enrichment, and natural microflora in the processing of Tonda di Cagliari natural table olives: Impact on chemical, microbiological, sensory and texture quality. LWT-Food Sci. Technol. 64, 671-677.

Campus M, Cauli E, Scano E, Piras F, Comunian R, Paba A, Daga E, Di Salvo R, Sedda P, Angioni A, Zurru R. 2017. Towards controlled fermentation of table olives: lab starter driven process in an automatic pilot processing plant. Food Bioproc. Tech. 10, 1063- 1073.

Campus M, Değirmencioğlu N, Comunian R. 2018. Technologies and trends to improve table olive quality and safety. Front. Microbiol. 9, 617.

Castro A de, Montaño A, Casado FJ, Sánchez AH, Rejano L. 2002. Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol. 19, 637-644.

Charoenprasert S, Mitchell A. 2014. Influence of California-style black ripe olive processing on the formation of acrylamide. J. Agric. Food Chem. 62, 8716-8721.

Chranioti C, Kotzekidou P, Gerasopoulos D. 2018. Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT-Food Sci. Technol. 89, 403- 408.

Chytiri A, Tasioula-Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG. 2019. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 100, 926-935.

Ciafardini G, Zullo BA. 2019. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 84, 103-250.

Comunian R, Ferrocino I, Paba A, Daga E, Campus M, Di Salvo R, Cauli E, Piras F, Zurru R, Cocolin L. 2017. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT Food Sci. Technol. 84, 64- 72.

Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G. 2012. Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol. 3, 248.

Değirmencioğlu, N. 2016. Modern techniques in the production of table olives, in Boskou D and Clodoveo MK (Ed.) Products from Olive Tree, IntechOpen, pp. 215.

García PG, Barranco CR, Durán-Quintana MC, Fernández AG. 2004. Biogenic amine formation and “zapatera” spoilage of fermented green olives: effect of storage temperature and debittering process. J. Food Prot. 67, 117-123.

Grounta A, Panagou EZ. 2014. Mono and dual species biofilm formation between Lactobacillus pentosus and Pichia membranifaciens on the surface of black olives under different sterile brine conditions. Ann. Microbiol. 64, 1757-1767.

Grounta A, Doulgeraki AI, Nychas GJE, Panagou EZ. 2016. Biofilm formation on Conservolea natural black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture. Food Microbiol. 56, 35- 44.

Heperkan D. 2013. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 4, 143.

Hesseltine, CW. 1992. Mixed Culture Fermentations. Applications of Biotechnology in Traditional Fermented Foods. Applications of Biotechnology in Traditional Fermented Foods, National Academies Press, Washington, Available from: https://www. ncbi.nlm.nih.gov/books/NBK234678/

Hurtado A, Reguant C, Bordons A, Rozès N. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol. 27, 731-740.

Hurtado A, Reguant C, Bordons A, Rozès N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1-8.

IOOC 2004. Trade Standard Applying to Table Olives. International Olive Oil Council COI/T20/ Doc No 1. Madrid: IOOC.

Kumral A, Basoglu F, Sahin I. 2009. Effect of the use of different lactic starters on the microbiological and physicochemical characteristics of naturally black table olives of Gemlik cultivar. J. Food Process. Pres. 33, 651-664.

Johnson RL, Mitchell AE. 2018. Reducing Phenolics Related to Bitterness in Table Olives. J. Food Qual. 1-12.

Lanza B. 2013. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation. Front. Microbiol. 4, 1-7.

Malheiro R, Casal S, Sousa A, De Pinho PG, Peres AM, Dias LG, Bento A, Pereira J. 2012. Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food Bioproc. Tech. 5, 1733-1742.

Marsilio V, Seghetti L, Iannucci E, Russi F, Lanza B, Felicioni M. 2005. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. J. Sci. Food Agr. 85, 1084-1090.

Ozdemir Y, Guven E, Ozturk A. 2014. Understanding the characteristics of oleuropein for table olive processing. J. Food Process Technol. 5, 1000328.

Panagou EZ, Schillinger U, Franz CM, Nychas GJE. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 25, 348-358.

Papadelli M, Zoumpopoulou G, Georgalaki M, Anastasiou R, Manolopoulou E, Lytra I, Papadimitriou K, Tsakalidou E. 2015. Evaluation of Two Lactic Acid Bacteria Starter Cultures for the Fermentation of Natural Black Table Olives (Olea europaea L cv. Kalamon). Pol. J. Microbiol. 64, 265-271.

Perpetuini G, Caruso G, Urbani S, Schirone M, Esposto S, Ciarrocchi A, Prete R, Garcia- Gonzalez N, Battistelli N, Gucci R, Servili M, Tofalo R, Corsetti A. 2018. Changes in polyphenolic concentrations of table olives (cv. Itrana) produced under different irrigation regimes during spontaneous or inoculated fermentation. Front. Microbiol. 9, 1287.

Perricone M, Bevilacqua A, Corbo MR, Sinigaglia M. 2010. Use of Lactobacillus plantarum and glucose to control the fermentation of “Bella di Cerignola” table olives, a traditional variety of Apulian region (southern Italy). J. Food Sci. 75, 430-436.

Pino A, De Angelis M, Todaro A, Van Hoorde K, Randazzo CL, Caggia C. 2018. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 9, 1125.

Pino A, Vaccalluzzo A, Solieri L, Romeo F, Todaro A, Caggia C, Arroyo-López F, Bautista-Gallego J, Randazzo C. 2019. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front. Microbiol. 10, 174.

Pistarino E, Aliakbarian B, Casazza AA, Paini M, Cosulich ME, Perego P. 2013. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem. 138, 2043-2049.

Psani M, Kotzekidou P. 2006. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microb. Biot. 22, 1329- 1336.

Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Mazzaglia A, Caggia C. 2014. Giarraffa and Grossa di Spagna naturally fermented table olives: effect of starter and probiotic cultures on chemical, microbiological and sensory traits. Food Res. Int. 62, 1154-1164.

Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. 2017. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 65, 136-148.

Randazzo CL, Russo N, Pino A, Mazzaglia A, Ferrante M, Conti GO, Caggia C. 2018. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale. Food Chem. Toxicol. 115, 491-498.

Ruiz-Barba JL, Jiménez-Díaz R. 2012. A novel Lactobacillus pentosus-paired starter culture for Spanish-style green olive fermentation. Food Microbiol. 30, 253-259.

Sabatini N, Mucciarella MR, Marsilio V. 2008. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum ( Olea europaea L., cv. Moresca and Kalamata). LWT- Food Sci. Technol. 41, 2017- 2022.

Sakouhi F, Harrabi S, Absalon C, Sbei K, Boukhchina S, Kallel H. 2008. α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): Changes in their composition during ripening and processing. Food Chem. 108, 833-839.

Schaide T, Cabrera-Bañegil M, Pérez-Nevado F, Esperilla A, Martín-Vertedor D. 2019. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. J. Food Sci. Technol. 56, 3001-3013.

Segovia-Bravo KA, López FA, García PG, Quintana MD, Fernández AG. 2007. Treatment of green table olive solutions with ozone. Effect on their polyphenol content and on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Int. J. Food Microbiol. 114, 60-68.

Sieuwerts S, De Bok FA, Hugenholtz J, van Hylckama-Vlieg JE. 2008. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74, 4997-5007.

Smid EJ, Lacroix C. 2013. Microbe–microbe interactions in mixed culture food fermentations. Curr. Opin. Biotech. 24, 148-154.

Tataridou M, Kotzekidou P. 2015. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157: H7 and Listeria monocytogenes. Int. J. Food Microbiol. 208, 122-130.

Tsapatsaris S, Kotzekidou P. 2004. Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int. J. Food Microbiol. 95, 157-168.

Tufariello M, Durante M, Ramires F, Grieco F, Tommasi L, Perbellini E, Falco V, Tasioula- Margari M, Logrieco A, Mita G, Bleve G. 2015. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 6, 1-15.

Tufariello M, Mita G, Bleve G. 2016. Biotechnology can improve a traditional product as table olives, in Boskou D and Clodoveo MK (Ed.) Products from Olive Tree, IntechOpen, pp. 235-260.

Zaragoza J, Bendiks Z, Tyler C, Kable M, Williams T, Luchkovska Y, Chow E, Boundy-Mills K, Marco M. 2017. Effects of exogenous yeast and bacteria on the microbial population dynamics and outcomes of olive fermentations. mSphere. 2, 00315-316.

Published

2021-06-07

How to Cite

1.
Erdemir Tıraş Z, Kalkan Yıldırım H. Application of mixed starter culture for table olive production. grasasaceites [Internet]. 2021Jun.7 [cited 2021Sep.16];72(2):e405. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1883

Issue

Section

Research