Aplicación de un cultivo iniciador mixto para la producción de aceituna de mesa

Autores/as

DOI:

https://doi.org/10.3989/gya.0220201

Palabras clave:

Aceituna de mesa, Cultivos iniciadores mixtos, Fermentación controlada

Resumen


La fermentación de la aceituna generalmente se lleva a cabo espontáneamente por la microbiota natural. Sin embargo, la fermentación espontánea tiene algunas desventajas, como la formación de defectos en el producto final debido a las actividades de microorganismos indeseables. El uso de cultivos iniciadores podría ofrecerse como una opción importante para proporcionar un entorno de fermentación más controlado y reducir el riesgo de deterioro. El uso de cultivos mixtos iniciadores (cepas generalmente seleccionadas de Lactobacillus con/sin levaduras) podría reducir el pH en un tiempo más corto, produciendo una mayor cantidad de ácido láctico y mejorando la seguridad microbiana, en comparación con la fermentación con cultivos iniciadores que contienen especies individuales o fermentación natural. Su uso también podría mejorar las propiedades organolépticas de las aceitunas de mesa. En particular, el uso de la levadura (como las cepas de W. anomolus, S. cerevisiae) en la fermentación de aceitunas, en combinación o secuencialmente con bacterias de ácido láctico podría dar lugar a un aumento de los compuestos volátiles y a la obtención de un producto final más aromático.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adebo OA, Njobeh PB, Adeboye AS, Adebiyi JA, Sobowale SS, Ogundele OM, Kayitesi E. 2018. Advances in fermentation technology for novel food products, in Panda SK and Shetty PH (Ed.) Innovations in Technologies for Fermented Food and Beverage Industries, Springer, Cham, pp. 71- 87. https://doi.org/10.1007/978-3-319-74820-7_4

Aktan N, Kalkan H. 1999. Sofralık Zeytin Teknolojisi. Ege Üniversitesi Basimevi, Bornova, Izmir, Turkey.

Angelis M de, Campanella D, Cosmai L, Summo C, Rizzello CG, Caponio F. 2015. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 52, 18-30. https://doi.org/10.1016/j.fm.2015.06.002 PMid:26338113

Aponte M, Blaiotta G, La Croce F, Mazzaglia A, Farina V, Settanni L, Moschetti G. 2012. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 30, 8-16. https://doi.org/10.1016/j.fm.2011.10.005 PMid:22265277

Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. https://doi.org/10.1016/j.fm.2012.10.005 PMid:23200662

Argyri AA, Nisiotou AA, Mallouchos A, Panagou EZ, Tassou CC. 2014. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. Int. J. Food Microbiol. 171, 68-76. https://doi.org/10.1016/j.ijfoodmicro.2013.11.003 PMid:24334091

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189-196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018 PMid:18835502

Arroyo-López F, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García- García P, Querol A, Garrido-Fernández A. 2012a. Potential benefits of the application of yeast starters in table olive processing. Front. Microbiol. 3, 1-4. https://doi.org/10.3389/fmicb.2012.00161 PMid:22558000 PMCid:PMC3338231

Arroyo-López F, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García- García P, Querol A, Garrido-Fernández A. 2012b. Yeasts in table olive processing: desirable or spoilage microorganisms? Int. J. Food Microbiol. 160, 42-49. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003 PMid:23141644

Bellis P de, Valerio F, Sisto A, Lonigro SL, Lavermicocca P. 2010. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 140, 6-13. https://doi.org/10.1016/j.ijfoodmicro.2010.02.024 PMid:20226556

Benítez-Cabello A, Rodríguez-Gómez F, Morales M, Garrido-Fernández A, Jiménez-Díaz R, Arroyo- López F. 2019. Lactic Acid Bacteria and Yeast Inocula Modulate the Volatile Profile of Spanish- Style Green Table Olive Fermentations. Foods 8, 280. https://doi.org/10.3390/foods8080280 PMid:31344875 PMCid:PMC6723112

Bevilacqua A, Beneduce L, Sinigaglia M, Corbo MR. 2013. Selection of yeasts as starter cultures for table olives. J. Food Sci. 78, 742-751. https://doi.org/10.1111/1750-3841.12117 PMid:23574538

Bevilacqua A, De Stefano F, Augello S, Pignatiello S, Sinigaglia M, Corbo M. 2015. Biotechnological innovations for table olives. Int. J. Food Sci. Nutr. 66, 127-131. https://doi.org/10.3109/09637486.2014.959901 PMid:25578760

Blana VA, Grounta A, Tassou CC, Nychas GJE, Panagou, EZ. 2014. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol. 38, 208-218. https://doi.org/10.1016/j.fm.2013.09.007 PMid:24290645

Bonatsou S, Benítez A, Rodríguez-Gómez F, Panagou EZ, Arroyo-López, FN. 2015. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiol. 46, 66-73. https://doi.org/10.1016/j.fm.2014.07.011 PMid:25475268

Bonatsou S, Tassou CC, Panagou EZ, Nychas GJE. 2017. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 5, 30. https://doi.org/10.3390/microorganisms5020030 PMid:28555038 PMCid:PMC5488101

Boskou G, Salta FN, Chrysostomou S, Mylona A, Chiou A, Andrikopoulos, NK. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 94, 558-564. https://doi.org/10.1016/j.foodchem.2004.12.005

Boskou D, Camposeo S, Clodoveo ML. 2015. Table olives as sources of bioactive compounds, in Boskou D (Ed.) Olive and Olive Oil Bioactive Constituents, AOCS Press, Urbana, pp. 217-259. https://doi.org/10.1016/B978-1-63067-041-2.50014-8

Botta C, Cocolin L. 2012. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and-independent approaches. Front. Microbiol. 3, 245. https://doi.org/10.3389/fmicb.2012.00245 PMid:22783248 PMCid:PMC3390769

Cagno R di, Surico RF, Siragusa S, De Angelis M, Paradiso A, Minervini F, De Gara L, Gobbetti M. 2008. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. Int. J. Food Microbiol. 127, 220-228. https://doi.org/10.1016/j.ijfoodmicro.2008.07.010 PMid:18710789

Campus M, Sedda P, Cauli E, Piras F, Comunian R, Paba A, Daga E, Schirru S, Angioni A, Zurru R, Bandino G. 2015. Evaluation of a single strain starter culture, a selected inoculum enrichment, and natural microflora in the processing of Tonda di Cagliari natural table olives: Impact on chemical, microbiological, sensory and texture quality. LWT-Food Sci. Technol. 64, 671-677. https://doi.org/10.1016/j.lwt.2015.06.019

Campus M, Cauli E, Scano E, Piras F, Comunian R, Paba A, Daga E, Di Salvo R, Sedda P, Angioni A, Zurru R. 2017. Towards controlled fermentation of table olives: lab starter driven process in an automatic pilot processing plant. Food Bioproc. Tech. 10, 1063- 1073. https://doi.org/10.1007/s11947-017-1882-7

Campus M, Değirmencioğlu N, Comunian R. 2018. Technologies and trends to improve table olive quality and safety. Front. Microbiol. 9, 617. https://doi.org/10.3389/fmicb.2018.00617 PMid:29670593 PMCid:PMC5894437

Castro A de, Montaño A, Casado FJ, Sánchez AH, Rejano L. 2002. Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol. 19, 637-644. https://doi.org/10.1006/fmic.2002.0466

Charoenprasert S, Mitchell A. 2014. Influence of California-style black ripe olive processing on the formation of acrylamide. J. Agric. Food Chem. 62, 8716-8721. https://doi.org/10.1021/jf5022829 PMid:25110929

Chranioti C, Kotzekidou P, Gerasopoulos D. 2018. Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT-Food Sci. Technol. 89, 403- 408. https://doi.org/10.1016/j.lwt.2017.11.007

Chytiri A, Tasioula-Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG. 2019. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J. Sci. Food Agric. 100, 926-935. https://doi.org/10.1002/jsfa.10019 PMid:31523827

Ciafardini G, Zullo BA. 2019. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 84, 103-250. https://doi.org/10.1016/j.fm.2019.103250 PMid:31421771

Comunian R, Ferrocino I, Paba A, Daga E, Campus M, Di Salvo R, Cauli E, Piras F, Zurru R, Cocolin L. 2017. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT Food Sci. Technol. 84, 64- 72. https://doi.org/10.1016/j.lwt.2017.05.039

Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G. 2012. Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol. 3, 248. https://doi.org/10.3389/fmicb.2012.00248

Değirmencioğlu, N. 2016. Modern techniques in the production of table olives, in Boskou D and Clodoveo MK (Ed.) Products from Olive Tree, IntechOpen, pp. 215. https://doi.org/10.5772/64988

García PG, Barranco CR, Durán-Quintana MC, Fernández AG. 2004. Biogenic amine formation and "zapatera" spoilage of fermented green olives: effect of storage temperature and debittering process. J. Food Prot. 67, 117-123. https://doi.org/10.4315/0362-028X-67.1.117 PMid:14717361

Grounta A, Panagou EZ. 2014. Mono and dual species biofilm formation between Lactobacillus pentosus and Pichia membranifaciens on the surface of black olives under different sterile brine conditions. Ann. Microbiol. 64, 1757-1767. https://doi.org/10.1007/s13213-014-0820-4

Grounta A, Doulgeraki AI, Nychas GJE, Panagou EZ. 2016. Biofilm formation on Conservolea natural black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture. Food Microbiol. 56, 35- 44. https://doi.org/10.1016/j.fm.2015.12.002 PMid:26919816

Heperkan D. 2013. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 4, 143. https://doi.org/10.3389/fmicb.2013.00143 PMid:23781216 PMCid:PMC3679444

Hesseltine, CW. 1992. Mixed Culture Fermentations. Applications of Biotechnology in Traditional Fermented Foods. Applications of Biotechnology in Traditional Fermented Foods, National Academies Press, Washington, Available from: https://www. ncbi.nlm.nih.gov/books/NBK234678/

Hurtado A, Reguant C, Bordons A, Rozès N. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol. 27, 731-740. https://doi.org/10.1016/j.fm.2010.03.006 PMid:20630314

Hurtado A, Reguant C, Bordons A, Rozès N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1-8. https://doi.org/10.1016/j.fm.2012.01.006 PMid:22475936

IOOC 2004. Trade Standard Applying to Table Olives. International Olive Oil Council COI/T20/ Doc No 1. Madrid: IOOC.

Kumral A, Basoglu F, Sahin I. 2009. Effect of the use of different lactic starters on the microbiological and physicochemical characteristics of naturally black table olives of Gemlik cultivar. J. Food Process. Pres. 33, 651-664. https://doi.org/10.1111/j.1745-4549.2008.00303.x

Johnson RL, Mitchell AE. 2018. Reducing Phenolics Related to Bitterness in Table Olives. J. Food Qual. 1-12. https://doi.org/10.1155/2018/3193185

Lanza B. 2013. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation. Front. Microbiol. 4, 1-7. https://doi.org/10.3389/fmicb.2013.00091 PMid:23675370 PMCid:PMC3650464

Malheiro R, Casal S, Sousa A, De Pinho PG, Peres AM, Dias LG, Bento A, Pereira J. 2012. Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food Bioproc. Tech. 5, 1733-1742. https://doi.org/10.1007/s11947-011-0567-x

Marsilio V, Seghetti L, Iannucci E, Russi F, Lanza B, Felicioni M. 2005. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. J. Sci. Food Agr. 85, 1084-1090. https://doi.org/10.1002/jsfa.2066

Ozdemir Y, Guven E, Ozturk A. 2014. Understanding the characteristics of oleuropein for table olive processing. J. Food Process Technol. 5, 1000328.

Panagou EZ, Schillinger U, Franz CM, Nychas GJE. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 25, 348-358. https://doi.org/10.1016/j.fm.2007.10.005 PMid:18206777

Papadelli M, Zoumpopoulou G, Georgalaki M, Anastasiou R, Manolopoulou E, Lytra I, Papadimitriou K, Tsakalidou E. 2015. Evaluation of Two Lactic Acid Bacteria Starter Cultures for the Fermentation of Natural Black Table Olives (Olea europaea L cv. Kalamon). Pol. J. Microbiol. 64, 265-271. https://doi.org/10.5604/01.3001.0009.2121

Perpetuini G, Caruso G, Urbani S, Schirone M, Esposto S, Ciarrocchi A, Prete R, Garcia- Gonzalez N, Battistelli N, Gucci R, Servili M, Tofalo R, Corsetti A. 2018. Changes in polyphenolic concentrations of table olives (cv. Itrana) produced under different irrigation regimes during spontaneous or inoculated fermentation. Front. Microbiol. 9, 1287. https://doi.org/10.3389/fmicb.2018.01287 PMid:29963031 PMCid:PMC6013719

Perricone M, Bevilacqua A, Corbo MR, Sinigaglia M. 2010. Use of Lactobacillus plantarum and glucose to control the fermentation of "Bella di Cerignola" table olives, a traditional variety of Apulian region (southern Italy). J. Food Sci. 75, 430-436. https://doi.org/10.1111/j.1750-3841.2010.01742.x PMid:21535552

Pino A, De Angelis M, Todaro A, Van Hoorde K, Randazzo CL, Caggia C. 2018. Fermentation of Nocellara Etnea table olives by functional starter cultures at different low salt concentrations. Front. Microbiol. 9, 1125. https://doi.org/10.3389/fmicb.2018.01125 PMid:29922251 PMCid:PMC5996112

Pino A, Vaccalluzzo A, Solieri L, Romeo F, Todaro A, Caggia C, Arroyo-López F, Bautista-Gallego J, Randazzo C. 2019. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front. Microbiol. 10, 174. https://doi.org/10.3389/fmicb.2019.00174 PMid:30800110 PMCid:PMC6376858

Pistarino E, Aliakbarian B, Casazza AA, Paini M, Cosulich ME, Perego P. 2013. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem. 138, 2043-2049. https://doi.org/10.1016/j.foodchem.2012.11.021 PMid:23411341

Psani M, Kotzekidou P. 2006. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microb. Biot. 22, 1329- 1336. https://doi.org/10.1007/s11274-006-9180-y

Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Mazzaglia A, Caggia C. 2014. Giarraffa and Grossa di Spagna naturally fermented table olives: effect of starter and probiotic cultures on chemical, microbiological and sensory traits. Food Res. Int. 62, 1154-1164. https://doi.org/10.1016/j.foodres.2014.05.056

Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. 2017. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 65, 136-148. https://doi.org/10.1016/j.fm.2017.01.022 PMid:28399996

Randazzo CL, Russo N, Pino A, Mazzaglia A, Ferrante M, Conti GO, Caggia C. 2018. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale. Food Chem. Toxicol. 115, 491-498. https://doi.org/10.1016/j.fct.2018.03.045 PMid:29625158

Ruiz-Barba JL, Jiménez-Díaz R. 2012. A novel Lactobacillus pentosus-paired starter culture for Spanish-style green olive fermentation. Food Microbiol. 30, 253-259. https://doi.org/10.1016/j.fm.2011.11.004 PMid:22265309

Sabatini N, Mucciarella MR, Marsilio V. 2008. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum ( Olea europaea L., cv. Moresca and Kalamata). LWT- Food Sci. Technol. 41, 2017- 2022. https://doi.org/10.1016/j.lwt.2007.12.002

Sakouhi F, Harrabi S, Absalon C, Sbei K, Boukhchina S, Kallel H. 2008. α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): Changes in their composition during ripening and processing. Food Chem. 108, 833-839. https://doi.org/10.1016/j.foodchem.2007.11.043 PMid:26065742

Schaide T, Cabrera-Bañegil M, Pérez-Nevado F, Esperilla A, Martín-Vertedor D. 2019. Effect of olive leaf extract combined with Saccharomyces cerevisiae in the fermentation process of table olives. J. Food Sci. Technol. 56, 3001-3013. https://doi.org/10.1007/s13197-019-03782-x PMid:31205355 PMCid:PMC6542927

Segovia-Bravo KA, López FA, García PG, Quintana MD, Fernández AG. 2007. Treatment of green table olive solutions with ozone. Effect on their polyphenol content and on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Int. J. Food Microbiol. 114, 60-68. https://doi.org/10.1016/j.ijfoodmicro.2006.09.032 PMid:17174427

Sieuwerts S, De Bok FA, Hugenholtz J, van Hylckama-Vlieg JE. 2008. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74, 4997-5007. https://doi.org/10.1128/AEM.00113-08 PMid:18567682 PMCid:PMC2519258

Smid EJ, Lacroix C. 2013. Microbe-microbe interactions in mixed culture food fermentations. Curr. Opin. Biotech. 24, 148-154. https://doi.org/10.1016/j.copbio.2012.11.007 PMid:23228389

Tataridou M, Kotzekidou P. 2015. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157: H7 and Listeria monocytogenes. Int. J. Food Microbiol. 208, 122-130. https://doi.org/10.1016/j.ijfoodmicro.2015.06.001 PMid:26065729

Tsapatsaris S, Kotzekidou P. 2004. Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int. J. Food Microbiol. 95, 157-168. https://doi.org/10.1016/j.ijfoodmicro.2004.02.011 PMid:15282128

Tufariello M, Durante M, Ramires F, Grieco F, Tommasi L, Perbellini E, Falco V, Tasioula- Margari M, Logrieco A, Mita G, Bleve G. 2015. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 6, 1-15. https://doi.org/10.3389/fmicb.2015.01007 PMid:26441932 PMCid:PMC4585182

Tufariello M, Mita G, Bleve G. 2016. Biotechnology can improve a traditional product as table olives, in Boskou D and Clodoveo MK (Ed.) Products from Olive Tree, IntechOpen, pp. 235-260. https://doi.org/10.5772/64687

Zaragoza J, Bendiks Z, Tyler C, Kable M, Williams T, Luchkovska Y, Chow E, Boundy-Mills K, Marco M. 2017. Effects of exogenous yeast and bacteria on the microbial population dynamics and outcomes of olive fermentations. mSphere. 2, 00315-316. https://doi.org/10.1128/mSphere.00315-16 PMid:28124026 PMCid:PMC5244262

Publicado

2021-06-07

Cómo citar

1.
Erdemir Tıraş Z, Kalkan Yıldırım H. Aplicación de un cultivo iniciador mixto para la producción de aceituna de mesa. Grasas aceites [Internet]. 7 de junio de 2021 [citado 27 de julio de 2024];72(2):e405. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1883

Número

Sección

Investigación