Bioactivity of betulinic acid nanoemulsions on skin carcinogenesis in transgenic mice K14E6

Authors

DOI:

https://doi.org/10.3989/gya.0553201

Keywords:

Betulinic acid, Medium chain fatty acids, Mice, Modified lecithin, Nanoemulsion, Skin tumors

Abstract


Alternative therapies for cancer treatment have been developed using bioactive compounds such as betulinic acid (BA). The objective of this study was to investigate the bioactivity of BA in its free form and compare it with its nano-encapsulated form under a skin carcinogenesis protocol in a genetically modified murine model. K14E6 and FVB mice were divided into four groups to be treated with free BA and with betulinic acid nanoemulsion (BANE). Lecithin enriched with medium chain fatty acids (MCFAs) was employed as an emulsifier to prepare the nanoemulsions with a mean droplet size of 40 nm. Skin tumors were induced by exposure to DMBA and TPA directly to the transgenic mice. Tumor development was completely inhibited by BANE and by 70% with free BA. This was validated by histological sections and the gene expression of the Cdk4 and Casp8 genes.

Downloads

Download data is not yet available.

References

Aisha AFA, Abu-Salah KM, Ismail Z, Malik A, Abdul S. 2012. α-Mangostin Enhances Betulinic Acid Cytotoxicity and Inhibits Cisplatin Cytotoxicity on HCT 116 Colorectal Carcinoma Cells. Molecules 17, 2939-2954. https://doi.org/10.3390/molecules17032939 PMid:22402764 PMCid:PMC6268688

Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SNA. 2016. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem. Biol. Drug Des. 87, 517-536. https://doi.org/10.1111/cbdd.12682 PMid:26535952

Bishayee A, Block K. 2015. A broad-spectrum integrative design for cancer prevention and therapy: The challenge ahead. Semin. Cancer Biol. 35, S1-S4. https://doi.org/10.1016/j.semcancer.2015.08.002 PMid:26260004

Chen CL, Chen CY, Chen YP, Huang YB, Lin MW, Wu DC, Huang HT, Liu MY, Chang HW, Kao YC, Yang PH. 2016. Betulinic acid enhances TGF-ß signaling by altering TGF-ß receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J. Biomed. Sci. 23, 1-15. https://doi.org/10.1186/s12929-016-0229-4 PMid:26922801 PMCid:PMC4769553

Cavazos-Garduño A, Ochoa Flores AA, Serrano-Niño JC, Martínez-Sanchez CE, Beristain CI, García HS. 2015. Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine. Ultrason. Sonochem. 24, 204-213. https://doi.org/10.1016/j.ultsonch.2014.12.007 PMid:25572417

Chintharlapalli S, Papineni S, Lei P, Pathi S, Safe S. 2011. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 11, 371. https://doi.org/10.1186/1471-2407-11-371 PMid:21864401 PMCid:PMC3170653

Ciurlea SA, Dehelean CA, Ionescu D, Berko S, Csanyi E, Hadaruga DI, Ganta S, Amiji MM. 2010. A comparative study regarding melanoma activity of Betulinic acid on topical ointment vs. systemic nanoemulsion delivery systems. J. Agroaliment. Processes Technol. 16, 420-426.

Das J, Samadder A, Das S, Paul A, Rahman A, Khuda-Bukhsh AR. 2016. Nanopharmaceutical Approach for Enhanced Anti-Cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target: -Anti-Cancer Potential of Nano-betulinic acid in Lung Cancer. J. Pharmacopunct. 19, 37-44. https://doi.org/10.3831/KPI.2016.19.005 PMid:27280048 PMCid:PMC4887750

Dehelean CA, Feflea S, Ganta S, Amiji M. 2011. Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay. J. Biomed. Nanotechnol. 7, 317-24. https://doi.org/10.1166/jbn.2011.1297 PMid:21702370

Diaz-Cano SJ. 2015. Pathological bases for a robust application of cancer molecular classification. Int. J. Mol. Sci. 16, 8655-8675. https://doi.org/10.3390/ijms16048655 PMid:25898411 PMCid:PMC4425102

Fulda S. 2009. Betulinic acid: A natural product with anticancer activity. Mol. Nutr. Food Res. 53, 140-146. https://doi.org/10.1002/mnfr.200700491 PMid:19065582

Fulda S, Kroemer G. 2009. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 14, 885-890. https://doi.org/10.1016/j.drudis.2009.05.015 PMid:19520182

Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. 2015. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis. 20, 1531-1562. https://doi.org/10.1007/s10495-015-1169-2 PMid:26362468

Harwansh RK, Mukherjee PK, Biswas S. 2017. Nanoemulsion as a novel carrier system for improvement of betulinic acid oral bioavailability and hepatoprotective activity. J. Mol. Liq. 237, 361-371. https://doi.org/10.1016/j.molliq.2017.04.051

Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. 2012. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine 7, 4391-4408. https://doi.org/10.2147/IJN.S33838 PMid:22927757 PMCid:PMC3420598

Kabri TH, Arab-Tehrany E, Belhaj N, Linder M. 2011. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J. Nanobiotechnology 9, 41. https://doi.org/10.1186/1477-3155-9-41 PMid:21936893 PMCid:PMC3200990

Li X, Chen JF, Yang B, Li DM, Wang YH, Wang WF. 2014. Production of structured phosphatidylcholine with high content of DHA/EPA by immobilized phospholipase A1-catalyzed transesterification. Int. J. Mol. Sci. 15, 15244-15258. https://doi.org/10.3390/ijms150915244 PMid:25170810 PMCid:PMC4200755

Mendoza-Villanueva D, Diaz-Chavez J, Uribe-Figueroa L, Rangel-Escareão C, Hidalgo-Miranda A, March-Mifsut S, Jimenez-Sanchez G, Lambert P, Garglio P. 2008. Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice. BMC Cancer 8, 347. https://doi.org/10.1186/1471-2407-8-347 PMid:19036130 PMCid:PMC2610035

Ochoa-Flores AA, Hernandez-Becerra JA, Cavazos-Garduño A, Soto-Rodriguez I, Sanchez-Otero MG, Vernon-Carter EJ, Garcia HS. 2017. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids. Curr. Drug Deliv. 14, 377-385. https://doi.org/10.2174/1567201813666160919142811 PMid:27654576

Palumbo MO, Kavan P, Miller WH, Panasci L, Assouline S, Johnson N, Cohen V, Patenaude F, Pollak M, Jagoe RT, Batist G. 2013. Systemic cancer therapy: Achievements and challenges that lie ahead. Front. Pharmacol. 4 MAY, 1-9. https://doi.org/10.3389/fphar.2013.00057

Pejin B, Jovanovic K, Mojovic M, Savic A. 2013. New and Highly Potent Antitumor Natural Products from Marine-Derived Fungi: Covering the Period from 2003 to 2012. Curr. Top. Med. Chem. 13 (21), 2745-2766. https://doi.org/10.2174/15680266113136660197 PMid:24083789

Pejin B, Kojic V, Bogdanovic G. 2014. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res. 28 (22), 2053-2056. https://doi.org/10.1080/14786419.2014.921686 PMid:24896297

Rieber M, Rieber MS. 2006. Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 status. Int. J. Cancer 118, 1135-1143. https://doi.org/10.1002/ijc.21478 PMid:16152620

Rodríguez VM, Shuk E, Arniella G, González CJ, Gany F, Hamilton JG, Gold GS, Hay JL. 2018. A qualitative exploration of Latinos' perceptions about skin cancer : The role of gender and linguistic acculturation. J. Cancer Educ. 32, 438-446. https://doi.org/10.1007/s13187-015-0963-4 PMid:26687207 PMCid:PMC4916022

Salvia-Trujillo L, Qian C, Martín-Belloso O, McClements DJ. 2013. Influence of particle size on lipid digestion and b-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 141, 1475-1480. https://doi.org/10.1016/j.foodchem.2013.03.050 PMid:23790941

Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. 2018. Therapeutic applications of betulinic acid nanoformulations. Ann. N.Y. Acad. Sci. 1421, 1-14. https://doi.org/10.1111/nyas.13570 PMid:29377164

Saneja A, Kumar R, Singh A, Dhar Dubey R, Mintoo MJ, Singh G, Mondhe DM, Panda AK, Gupta PN. 2017. Development and evaluation of long-circulating nanoparticles loaded with betulinic acid for improved anti-tumor efficacy. Int. J. Pharm. 531, 153-166. https://doi.org/10.1016/j.ijpharm.2017.08.076 PMid:28823888

Soica C, Danciu C, Savoiu-Balint G, Borcan F, Ambrus R, Zupko I, Bojin F, Coricovac D, Ciurlea S, Avram S, Dehelean CA, Olariu T, Matusz P. 2014. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int. J. Mol. Sci. 15, 8235-8255. https://doi.org/10.3390/ijms15058235 PMid:24821543 PMCid:PMC4057729

Thurnher D, Turhani D, Pelzmann M, Wannemacher B, Knerer B, Formanek M, Wacheck V, Selzer E. 2003. Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head Neck. 25, 732-740. https://doi.org/10.1002/hed.10231 PMid:12953308

Vikbjerg AF, Rusig JY, Jonsson G, Mu H, Xu X. 2006. Strategies for lipase-catalyzed production and the purification of structured phospholipids. Eur. J. Lipid Sci. Technol. 108, 802-811. https://doi.org/10.1002/ejlt.200600138

Xu T, Pang Q, Wang Y, Yan X. 2017. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int. J. Mol. Med. 40, 1669-1678. https://doi.org/10.3892/ijmm.2017.3163

Yang LJ, Chen Y, Ma Q, Fang J, He J, Cheng YQ, Wu QK. 2010. Effect of betulinic acid on the regulation of Hiwi and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta Pharmacol. Sin. 31, 66-72. https://doi.org/10.1038/aps.2009.177 PMid:20037601 PMCid:PMC4002693

Published

2021-12-30

How to Cite

1.
Agame-Lagunes B, Alegria-Rivadeneyra M, Alexander-Aguilera A, Quintana-Castro R, Torres-Palacios C, Grube-Pagola P, Cano-Sarmiento C, García-Varela R, García H. Bioactivity of betulinic acid nanoemulsions on skin carcinogenesis in transgenic mice K14E6. Grasas aceites [Internet]. 2021Dec.30 [cited 2024Mar.28];72(4):e433. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1901

Issue

Section

Research

Funding data