Chemical-functional composition of Terminalia catappa oils from different varieties

Authors

DOI:

https://doi.org/10.3989/gya.0102211

Keywords:

Antioxidant activity, Bioactive substances, Linoleic acid, Oleic acid, Tropical almond, Vegetable oil

Abstract


This study aimed to extract and physical-chemically characterize Terminalia catappa L. kernel oil from purple (CR) and yellow (CA) varieties. Physical-chemical parameters, composition of fatty acids, nutritional quality indices, bioactive compounds and antioxidant capacity of both oil varieties were evaluated according to the literature. Both oils presented low levels of acidity and peroxides, besides the predominance of unsaturated fatty acids, ~63% of oleic and ~26% of linoleic acids, which influenced its nutritional indices. The CR oil variety exhibited a higher content in anthocyanin (18.3 ± 1.5 mg·100 g-1), ascorbic acid (68.4 ± 2.02 mg·100 g-1) and total polyphenol contents (152.3 ± 2.4 mg GAE·g-1), and a good antioxidant activity (38.6 ± 2.2 μg TE·g-1) determined by TEAC assay, when compared to the CA oil (p < 0.05). Therefore, the results confirm the importance of T. catappa as a lipid source for human consumption to be used in the development of food products.

Downloads

Download data is not yet available.

References

Abdulkadir AR. 2015. In vitro antioxidant activity of ethanolic extract from Terminalia catappa (l.) leaves and fruits: Effect of fruit ripening. Int. J. Sci. Res. 8, 1244-1249.

Agu CM, Menkiti MC, Nwabanne JT, Onukwuli OD. 2019. Comparative assessment of chemically modified Terminalia catappa L. kernel oil samples - A promising ecofriendly transformer fluid. Ind. Crops Prod. 140, 111727. https://doi.org/10.1016/j.indcrop.2019.111727

Aliakbarian B, Casazza AA, Perego P. 2011. Valorization of olive oil solid waste using high pressure-high temperature reactor. Food Chem. 128, 704-710. https://doi.org/10.1016/j.foodchem.2011.03.092

Antoniosi Filho NR, Mendes OL, Lanças FM. 1995. Computer prediction of triacylglycerol composition of vegetable oils by HRGC. Chromatograph. 40, 557-562. https://doi.org/10.1007/BF02290268

AOCS - American Oil Chemist's Society. 2004. Official methods and recommended practices of the AOCS. 5th. Ed. Champaign, Illinois.

Ben EE, Asuquo AE, Owu DU. 2019. Comparative effect of aspirin, meloxicam and Terminalia catappa leaf astanhola serum levels of some inflammatory markers in alloxan induced diabetic rats. Asian J. Res. Biochem. 4, 1-10. https://doi.org/10.9734/ajrb/2019/v4i130058

Castelo-Branco VN, Torres AG. 2012. Generalized linear model describes determinants of total antioxidant capacity of refined vegetable oils. Eur. J. Lipid Sci. Technol. 114, 332-342. https://doi.org/10.1002/ejlt.201100181

Chen Y, Huang B, He J, Han L, Zhan Y, Wang Y. 2011. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita. J. Ethnopharmacol. 136, 309-315. https://doi.org/10.1016/j.jep.2011.04.058 PMid:21549823

Codex Alimentarius. 2001. Codex standards for fats and oils. Codex Stand 210 - 1999. FAO/WHO Food Standards. Second edition (revised on 2001). Available at http://www.fao.org/3/y2774e/y2774e03.htm#bm3/ accessed on March 14, 2019.

Cunha-Santos ECE, Viganó J, Neves DA, Martínez J, Godoy H T. 2019. Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Res. Int. 115, 160-166. https://doi.org/10.1016/j.foodres.2018.08.031 PMid:30599928

Domínguez R, Agregán R, Gonçalves A, Lorenzo JM. 2016. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas Aceites. 67, e133. https://doi.org/10.3989/gya.0629152

Freitas MLF, Chisté RC, Polachini TC, Sardella LACZ, Aranha CPM, Ribeiro APB, Nicoletti VR. 2018. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil. Grasas Aceites. 68, 220. https://doi.org/10.3989/gya.0557171

Ghafoor K, Özcan MM, AL-Juhaimi F, Babiker EE, Fadimu GJ. 2019. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT - Food Sci. Technol. 99, 490-496. https://doi.org/10.1016/j.lwt.2018.10.017

Hassanien MMM, Abdel-Razek AG, Rudzińska M, Siger A, Ratusz K, Przybylski R. 2014. Phytochemical contents and oxidative stability of oils from non-traditional sources. Europ. J. Lipid Sci. Technol. 116, 1563-1571. https://doi.org/10.1002/ejlt.201300475

Huang Y-H, Wu P-Y, Wen K-C, Lin C-Y, Chiang H-M. 2018. Protective effects and mechanisms of Terminalia catappa L. astanhola extract on hydrogen-peroxide-induced oxidative stress in human skin fibroblasts. BMC Complementary Altern. Med. 18, p. 266-275. https://doi.org/10.1186/s12906-018-2308-4 PMid:30285714 PMCid:PMC6167875

ISO - International Organization for Standardization. 2000. ISO 5509:2000 Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. ISO, Geneva, Switzerland.

Janporn S, Ho C-T, Chavasit V, Pan M-H, Chittrakorn S, Ruttarattanamongkol K, Weerawatanakorn M. 2015. Physicochemical properties of Terminalia catappa seed oil as a novel dietary lipid source. J. Food Drug Anal. 23, 201-209. https://doi.org/10.1016/j.jfda.2014.06.007 PMid:28911374

Jokić S, Svilović S, Vidović S. 2015. Modelling the supercritical CO2 extraction kinetics of soybean oil. Croat. J. Food Sci. Technol. 7, 52-57.

Ladele B, Kpoviessi S, Ahissou H, Gbenou J, Kpadonou-Kpoviessi B, Mignolet E, Marie-France H, Bero J, Larondelle Y, Leclercq JK, Moudachirou M. 2016. Chemical composition and nutritional properties of Terminalia catappa L. oil and kernels from Benin. C. R. Chim. 19, 876-883. https://doi.org/10.1016/j.crci.2016.02.017

Lorenzo ND, Santos OV, Lannes SCS. 2020. Fatty acid composition, cardiovascular functionality, thermogravimetric-differential, calorimetric and spectroscopic behavior of pequi oil (Caryocar villosum(Alb.) Pers.). Food Sci. Technol. 28, 1-6.

Menkiti MC, Agu CM, Udeigwe TK. 2015. Extraction of oil from Terminalia catappa L.: Process parameter impacts, kinetics, and thermodynamics. Ind. Crops Prod. 77, 713-723. https://doi.org/10.1016/j.indcrop.2015.08.019

Pinto RHH, Sena C, Santos OV, Costa WA, Rodrigues AMC, Carvalho Junior RN. (2018). Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: Global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity. Grasas Aceites. 69, 246e, 1-8. https://doi.org/10.3989/gya.0883171

Salawu AR, Onyegbula AF, Lawal IO, Akande SA, Oladipo AK. 2018. Comparative study of the nutritional, phytochemical and mineral compositions of the nuts of Tropical Almond (Terminalia catappa) and Sweet Almond (Prunus amygdalus). Ruhuna J. Sci. 9, 70. https://doi.org/10.4038/rjs.v9i1.37

Santos OV, Lorenzo ND, Souza ALG, Costa CEF, Conceição LRV, Lannes SCS, Teixeira-Costa BE. 2021. CO2supercritical fluid extraction of pulp and nut oils from Terminalia catappa fruits: Thermogravimetric behavior, spectroscopic and fatty acid profiles. Food Res. Int. 139, 109814. https://doi.org/10.1016/j.foodres.2020.109814 PMid:33509453

Santos OV, Soares SD, Dias PC, Duarte SPA, Santos MPL, Nascimento FCA. 2020. Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Rev. Nutr. 33, 1-12. https://doi.org/10.1590/1678-9805202033e190146

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 77, 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3

Silva MSD, Alves-Santos AM, Santos IDD, Wagner R, Naves MMV, Cordeiro MWS. 2020a. A new population of pequi (Caryocar spp.) developed by Brazilian indigenous people has agro-industrial and nutraceutical advantages. Eur. Food Res. Technol. 246, 1715-1724. https://doi.org/10.1007/s00217-020-03525-9

Silva JCM, Nicolau CL, Cabral MRP, Costa ER, Stropa JM, Silva CAA, Scharf DR, Simionatto EL, Fiorucci AR, Oliveira LCS, Simionatto E. 2020b. Thermal and oxidative stabilities of binary blends of esters from soybean oil and non-edible oils (Aleurites moluccanus, Terminalia catappa, and Scheelea phalerata). Fuel. 262 , 116644 https://doi.org/10.1016/j.fuel.2019.116644

Silva LMR, Figueiredo EAT, Ricardo NMPS, Vieira IGP, Figueiredo RW, Brasil IM, Gomes CL. 2014. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 143, 398-404. https://doi.org/10.1016/j.foodchem.2013.08.001 PMid:24054258

Singh SP, Choudhary MR. 2012. Indian Almond in Production technology of fruit crops in Wasteland. Scientific Publishers, Jodhpur, India.

Souza ALG, Ferreira MCR, Miranda LR, Silvino RCAS, Lorenzo ND, Correa NCF, Santos OV. 2016. 'Aproveitamento nutricional e tecnológico dos frutos da Castanhola (Terminalia catappa Linn.)*', Revista Pan-Amazônica de Saúde, 7, 23-29. https://doi.org/10.5123/S2176-62232016000300003

Symoniuk E, Ratusz K, Ostrowska-Ligęza E, Krygier K. 2018. Impact of Selected Chemical Characteristics of Cold-Pressed Oils on their Oxidative Stability Determined Using the Rancimat and Pressure Differential Scanning Calorimetry Method. Food Anal. Methods. 11, 1095-1104. https://doi.org/10.1007/s12161-017-1081-1

Ulbricht TL, Southgate DA. 1991. Coronary heart disease: seven dietary factors. The Lancet. 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-M

Published

2022-06-13

How to Cite

1.
Santos O, Soares S, Dias P, Duarte S, Santos M, Nascimento F, Teixeira-Costa B. Chemical-functional composition of Terminalia catappa oils from different varieties. grasasaceites [Internet]. 2022Jun.13 [cited 2022Oct.5];73(2):e454. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1931

Issue

Section

Research