Enzyme extraction of cupuassu (Theobroma grandiflorum S.) fat sedes
DOI:
https://doi.org/10.3989/gya.1012212Keywords:
Amazon seeds, By-products properties, Green extraction, Theobroma grandiflorumAbstract
Enzyme-assisted extraction is considered an environmentally friendly technique. Cellulase, pectinase and protease were tested for cupuassu seeds fat extraction. The best fat efficiency (81.66%) was obtained for the solute:solvent 1:5 (m:w), orbital shaker at 120 rpm, 60 °C, for 8 hours and enzyme concentrations (cellulase, pectinase and protease) of 1.0%. The fat was characterized for physicochemical properties, fatty acid profile, phenolic compounds, antioxidant activities and oxidative stability. The fat showed good thermal stability (14.26 h) and high contents of monounsaturated (42.42%) and saturated (43.47%) fatty acids with higher concentrations of oleic and stearic acids, respectively, and a high content of phenolic compounds (141.84 µg EAG·g-1) in the fat, and in the aqueous extract (926.47 µg EAG·g-1). The results indicated that the cupuassu seed fat obtained by enzymatic extraction showed superior properties to cupuassu fat obtained by cold pressing, in addition to generating an aqueous fraction which is rich in bioactive compounds that can be used as ingredients in the food and pharmaceutical sectors.
Downloads
References
AOAC. 2002. Official methods of analysis of AOAC. (17th ed). Washington.
AOCS. 2004. Official methods and recommended practices of the AOCS. (4th ed). Champaing.
Bhattacharjee B, Pal PK, Chattopadhyay A, Bandyopadhyay D. 2020. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study. Life Sci. 244¸ 1-18. https://doi.org/10.1016/j.lfs.2020.117324 PMid:31958420
Bezerra CV, Rodrigues AMC, Oliveira PD, Silva DA, Silva LHM. 2017. Technological properties of Amazonian oils and fats and their applications in the food industry. Food Chem. 221, 1466-1473. https://doi.org/10.1016/j.foodchem.2016.11.004 PMid:27979116
Codex Alimentarius. 1999. Standard for Named Vegetable Oils. Codex Stan 210. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-709-27%252FWorking%2Bdocuments%252FREP19_FOe_compiled.pdf. Acessed 23 jan 2020.
Connor WE. 2000. Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nut. 71, 171-175. https://doi.org/10.1093/ajcn/71.1.171S PMid:10617967
Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B. 2011. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 44, 2047-2053. https://doi.org/10.1016/j.foodres.2010.11.003
Daukšas E, Venskutonis PR, Sivik B. 2012. Comparison of oil from Nigella damascena seed recovered by pressing, conventional solvent extraction and carbon dioxide extraction. J. Food Sci. 67, 1021-1024. https://doi.org/10.1111/j.1365-2621.2002.tb09447.x
Dubois V, Breton S, Linder M, Fanni J, Parmentier M. 2007. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 109, 710-732. https://doi.org/10.1002/ejlt.200700040
Garcia-Aloy M, Hulshof PJM, Estruel-Amades S. 2019. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search.Genes Nutr. 14,74-98. https://doi.org/10.1186/s12263-019-0628-8 PMid:30923582 PMCid:PMC6423890
García-González DL, Baeten V, Pierna JAF. Tena N. 2013. Handbook of Olive Oil (2nd ed). Nova York: Springer US, (Chapter 10).
Hayouni EA, Abebradda M, Bouix M, Hamdi M. 2007. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts.Food Chem. 105, 1126-1134. https://doi.org/10.1016/j.foodchem.2007.02.010
Hu B, Wang H, He L, Li Y, Li C, Zhang Z, Liu Y, Zhou K, Qing Z, Liu A, Liu S, Zhu Y, Luo Q. 2019. A method for extracting oil from cherry seed by ultrasonic-microwave assisted aqueous enzymatic process and evaluation of its quality. J. Chromatog. A, 1587, 50-60. https://doi.org/10.1016/j.chroma.2018.12.027 PMid:30578025
Hu S, Kim B-Y, Baik M-Y. 2016. Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem. 194, 1089-1094. https://doi.org/10.1016/j.foodchem.2015.08.126 PMid:26471657
Jiao J, Zhu-Gang L, Qing-Yan G, Xiao-Juan L, Fu-Yao W, Yu-Jie F, Ma W. 2014. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 147, 17-24. https://doi.org/10.1016/j.foodchem.2013.09.079 PMid:24206680
Mohammed NK, Samir ZT, Jassim MA, Saeed SK. 2021. Effect of different extraction methods on physicochemical properties, antioxidant activity, of virgin coconut oil. Mat. Today: Proc. 42, 2000-2005. https://doi.org/10.1016/j.matpr.2020.12.248
Pereira ALF, Abreu VKG, Rodriguez S. 2018. Cupuassu - Theobroma Grandiflorum. In: Exotic Fruits, 159-162. https://doi.org/10.1016/B978-0-12-803138-4.00021-6
Rao R, Sankar KU, Sambaiah K, Lokesh BR. 2001. Differential scanning calorimetric studies on structured lipids from coconut oil triglycerides containing stearic acid. Eur. Food Res. Technol. 212, 3, 334-343. https://doi.org/10.1007/s002170000254
Re R, Pelegrini N, Proteggente A, Pannala A, Yang M, Riceevans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 PMid:10381194
Rodrigues AMC, Darnet S, Silva LHM. 2010. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soci. 21, 2000-2004. https://doi.org/10.1590/S0103-50532010001000028
Rosenthal A, Pyle DL, Niranjan K, Gilmour S, Trinca L. 2001. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme and Microbial Technology. Elsevier Science Inc. 28, 6, 499-509. https://doi.org/10.1016/S0141-0229(00)00351-3 PMid:11267644
Santos WO, Rodrigues AMC, Silva LHM. 2022. Chemical properties of the pulp oil of tucumã-i-da-várzea (Astrocaryum giganteum Barb. Rodr.) obtained by enzymatic aqueous extraction. LWT-Food Sci. Technol. 163, 113534. https://doi.org/10.1016/j.lwt.2022.113534
Silva JPP, Rodrigues AMC, Silva LHM. 2019. Aqueous enzymatic extraction of buriti (Mauritia Flexuosa) oil: yield and antioxidant compound. Open Food Sci. J. 11, 9-17. https://doi.org/10.2174/1874256401911010009
Silva LHM, Pinheiro R, Paula L, Fernandes K, Rodrigues AMC. 2018. Chemical and nutrition potential of Amazonian seeds: cupuassu and tucuman. Food Public Health 8, 57-64.
Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144-168. https://doi.org/10.5344/ajev.1965.16.3.144
Tang S, Qin C, Wang H, Li S, Tian S. 2011. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Superc. Fluids 57, 44-49. https://doi.org/10.1016/j.supflu.2011.01.010
Teixeira CB, Macedo GA, Macedo JA, Silva LHM, Rodrigues AMC. 2013. Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresour. Technol. 129, 575-581. https://doi.org/10.1016/j.biortech.2012.11.057 PMid:23274221
Ulbricht TLV, Southgate DAT. 2001. Coronary heart disease: Seven dietary factors. The Lancet 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-M PMid:1681350
Yusoff MM, Gordon MH, Ezeh O, Niranjan K. 2017. High pressure pre-treatment of Moringa oleifera seed kernels prior to aqueous enzymatic oil extraction. Innov. Food Sci. Emerg. Technol. 39, 129-136. https://doi.org/10.1016/j.ifset.2016.11.014
Zarringhalami S, Sahari MA, Barzegar M, Hamidi-Esfehani Z. 2021. Production of Cocoa Butter Replacer by Dry Fractionation, Partial Hydrogenation, Chemical and Enzymatic Interesterification of Tea Seed Oil. Food Nut. Sci. 3, 184-189 https://doi.org/10.4236/fns.2012.32027
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 309876/2016-8;308396/2018-9;313453/2019-5