3-MCPD and glycidol levels in edible oils and fats obtained from local markets in Türkiye





3-MCPD, Edible oils, Glycidol, Margarine, Olive oil


In this study, it was aimed to determine the 3-MCPD and glycidol levels in 9 types (46 brands) of edible fat and oil offered for sale in markets located in Türkiye. 3-MCPD and glycidol levels were determined by making some modifications to the DGF C VI 18 (10) method. The highest levels of 3-MCPD and glycidol levels were detected in hazelnut oils, riviera olive oils, margarines, and shortenings. As expected, these contaminants were not observed in extra-virgin olive oils, while they were detected at low levels in fish oils. The highest 3-MCPD levels were found in the range of 0.06-2.12 mg·kg-1 in hazelnut oil, 0.16-1.69 mg·kg-1 in riviera olive oils, and 0.17-1.17 mg·kg-1 in margarines. The highest glycidol levels were found in the shortenings in the range of 1.98-6.46 mg·kg-1, followed by hazelnut oil (0.54-2.63 mg·kg-1) and riviera olive oil (0.19-3.53 mg·kg-1).


Download data is not yet available.


Anonymous, 2018. Proposed draft code of practice for the reduction of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined oils and products made with refined oils, especially infant formula. Joint FAO/WHO Food Standards Programme, 12-16 March. Codex Alimentarius Commission Committee on Food Additives and Contaminants.

Becalski A, Feng S, Lau BPY, Zhao T. 2015. A pilot survey of 2- and 3-monochloropropanediol and glycidol fatty acid esters in foods on the Canadian market 2011-2013. J. Food Compos. Anal. 37, 58-66.

Boon PE, te Biesebeek JD. 2016. Preliminary assessment of dietary exposure to 3-MCPD in the Netherlands. RIVM Letter report 2015-0199 pp 1-43. https://www.rivm.nl/bibliotheek/rapporten/2015-0199.pdf

Cho W-S, Han BS, Nam KT, Park K, Choi M, Kim SH, Jeong J, Jang DD. 2008. Carcinogenicity study of 3-monochloropropane-1, 2-diol in Sprague-Dawley rats. Food Chem. Toxicol. 46, 3172-3177.

Custodio-Mendoza JA, Carro AM, Lage-Yusty MA, Herrero A, Valente IM, Rodrigues JA, Lorenzo RA. 2019. Occurrence and exposure of 3-monochloropropanediol diesters in edible oils and oil-based foodstuffs from the Spanish market. Food Chem. 270, 214-222.

Deniz Şirinyıldız D, Aydın E, Öztürk Y, Avcı T, Yıldırım A, Yorulmaz A. 2019. Türk piyasasindan toplanan bitkisel yağlar ve margarinlerde 3-MCPD yağ asidi esterlerinin düzeyi. Gida / J. Food 44, 491-497.

Destaillats F, Craft BD, Sandoz L, Nagy K. 2012. Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess, 29 (1), 29-37.

DGF, 2011. German Society for Fat Science Standard Method C-VI 18 (10) Fatty-Acid-Bound 3-Chloropropane-1, 2-Diol (3-MCPD) and 2, 3-Epoxipropane-1-ol (Glycidol): Determination in Oils and Fats by GC/MS (Differential Measurement), German Standard Methods for the Investigation of Fats, Fat Products, Surfactants and Related Substances, Frankfurt, Germany

EFSA. 2016. Risks for human health related to the presence of 3-and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food (Vol. 14), Wiley Online Library.

EFSA. 2018. Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters (Vol. 16).

EU. 2020. COMMISSION REGULATION (EU) 2020/1322 of 23 September 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of 3‐monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods.

Franke K, Strijowski U, Fleck G, Pudel F. 2009. Influence of chemical refining process and oil type on bound 3-chloro-1,2-propanediol contents in palm oil and rapeseed oil. LWT-Food Sci. Technol, 42 (10), 1751-1754.

Hamlet CG, Asuncion L, Velısek J, Dolezal M, Zelinkova Z. 2011. Formation and occurrence of esters of 3-chloropropane- 1 , 2-diol ( 3-CPD ) in foods : What we know and what we assume. Eur. J. Lipid Sci. Technol. 113 (3) 279-303.

IARC, 2013. Working Group on the Evaluation of Carcinogenic Risks to Humans. Some chemicals present in industrial and consumer products, food and drinking-water. IARC monographs on the evaluation of carcinogenic risks to humans, 101, 9.

IOOC, 2021. Trade standard applying to olive oils and olive pomace oils. COI/T.15/NC No 3/Rev. 17. International Olive Oil Council, 15 (3), 1-17.

Jedrkiewicz R, Kupska M, Glowacz A, Gromadzka J, Namiesnik J. 2016. 3-MCPD: A Worldwide Problem of Food Chemistry. Crit. Rev. Food Sci. Nutr. 56, 2268-2277.

Kalkan O, Topkafa M, Kara H. 2021. Determination of effect of some parameters on formation of 2-monochloropropanediol, 3-monochloropropanediol and glycidyl esters in the frying process with sunflower oil, by using central composite design. J. Food Compos. Anal. 96, 103681.

Karl H, Merkle S, Kuhlmann J, Fritsche J. 2016. Development of analytical methods for the determination of free and ester bound 2-, 3-MCPD, and esterified glycidol in fishery products. Eur. J. Lipid Sci. Technol. 118, 406-417.

Kuhlmann J. 2011. Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur. J. Lipid Sci. Technol. 113, 335-344.

Kuhlmann J. 2016. Analysis and occurrence of dichloropropanol fatty acid esters and related process-induced contaminants in edible oils and fats. Eur. J. Lipid Sci. Technol. 118, 382-395.

Li C, Li L, Jia H, Wang Y, Shen M, Nie S, Xie M. 2016. Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining. Food Chem. 199, 605-611.

Li C, Nie SP, Zhou Y qiang, Xie MY. 2015. Exposure assessment of 3-monochloropropane-1, 2-diol esters from edible oils and fats in China. Food Chem. Toxicol. 75, 8-13.

Lucas D, Hoffmann A, Gil C. 2017. Fully Automated Determination of 3-MCPD and Glycidol in Edible Oils by GC / MS Based on the Commonly Used Methods ISO 18363-1, AOCS Cd 29c-13, and DGF C-VI 18 (10). GERSTEL Application Note, 18 (191), 1-6.

Mogol BA. 2014. Mitigation of Thermal Process Contaminants by Alternative Technologies. Institute of Sciences of Hacettepe University.

Nagy K, Sandoz L, Craft BD, Destaillats F. 2011. Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants. Food Addit. Contam: Part A, 28 (11), 1492-1500.

Önal B, Özdikicierler O, Yemişçioğlu F. 2016. Türkiye piyasasında satışa sunulan patates cipslerinde 3-MCPD esterleri ve glisidil esterleri miktarları. Akad. Gıda 17, 267-274.

Özdikicierler O, Yemişçioğlu F, Saygın Gümüşkesen A. 2016. Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur. Food Res. Technol. 242, 805-813.

Pudel F, Benecke P, Fehling P, Freudenstein A, Matthäus B, Schwaf A. 2011. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol. 113, 368-373.

Sevindirici G, Özdikicierler O, Yemişçioğlu F. 2018. 3-Mcpd and Ge Risk in Refined Vegetable Oils: Structure, Formation Mechanism, Legal Regulations and Mitigation Techniques. Gida / J. Food 43, 886-895.

Shahidi F. 2005. Bailey’s Industrial Oil and Fat Products, Edible Oil and Fat Products: Processing Technologies. https://www.google.com/books?hl=tr&lr=&id=4AbyDwAAQBAJ&oi=fnd&pg

Shahidi F, Zhong Y. 2005. Lipid oxidation: measurement methods. Bailey’s industrial oil and fat products. Bailey’s industrial oil and fat products, Ed.: F Shahidi, John Wiley & Sons Inc. (Eds.), Hoboken, NJ, 357-385.

Shimizu M, Vosmann K, Matthäus B. 2012. Generation of 3-monochloro-1, 2-propanediol and related materials from tri-, di-, and monoolein at deodorization temperature. Eur. J. Lipid Sci. Technol. 114 (11), 1268-1273.

Svejkovska B, Dolezal M, Velisek J. 2006. Formation and decomposition of 3-chloropropane-1, 2-diol esters in models simulating processed foods. Czech J. Food Sci. 24 (4), 172.

Türkoğlu H, Kanık Z, Yakut A, Güneri A, Akın M. 2012. Some Properties of Olive Oils Sold in Nizip and Surroundings. J.Agric. Fac. HR.U. 16, 1-8.

Weißhaar R, Perz R. 2010. Fatty acid esters of glycidol in refined fats and oils. Eur. J. Lipid Sci. Technol. 112, 158-165.

Weißhaar R. 2011. Fatty acid esters of 3-MCPD: Overview of occurrence and exposure estimates. Eur. J. Lipid Sci. Technol. 113, 304-308.

Weißhaar R. 2008. 3-MCPD-esters in edible fats and oils-a new and worldwide problem. Eur. J. Lipid Sci. Technol. 110 (8), 671-672.

Xu G, Liu D, Zhao G, Chen S, Wang J, Ye X. 2016. Effect of Eleven Antioxidants in Inhibiting Thermal Oxidation of Cholesterol. J. Am. Oil Chem. Soc. 93, 215-225.

Zelinkova Z, Svejkovska B, Velisek J, Dolezal M. 2006. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 23, 1290-1298.

Zhou H, Jin Q, Wang X, Xu X. 2014. Effects of temperature and water content on the formation of 3-chloropropane-1, 2-diol fatty acid esters in palm oil under conditions simulating deep fat frying. Eur. Food Res. Technol. 238, 495-501.



How to Cite

Gündüz A, Ceylan M, Baştürk A. 3-MCPD and glycidol levels in edible oils and fats obtained from local markets in Türkiye. grasasaceites [Internet]. 2023May25 [cited 2023May28];74(2):e501. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1982

Funding data

Yüzüncü Yil Üniversitesi
Grant numbers FYL-2019-8058