Contenido de fenoles y actividad de β-glucosidasa durante el periodo de maduración de frutos de olivo (Erkence cv.) presentes en diferentes localizaciones

Autores/as

DOI:

https://doi.org/10.3989/gya.0865231.2017

Palabras clave:

Altitud, β-glucosidasa, Clima, Enzima, Fenol, Olivo

Resumen


En el presente estudio, los frutos de aceitunas Erkence se examinaron durante dos períodos de cosecha y se llevaron a cabo en dos huertos cerca del mar y de baja altitud (A) y lejos del mar y de mayor altitud (B). Se analizaron las aceitunas en las direcciones de los árboles orientadas al mar noreste (NE) y suroeste (SW) en términos de índice de madurez, contenido de fenoles totales, compuestos fenólicos, actividad de la enzima β-glucosidasa, contenido de proteína total y actividad enzimática específica. Los datos climáticos se recogieron en el árbol y en la estación meteorológica. El índice de madurez, la actividad de la enzima β-glucosidasa, el contenido de proteínas totales y la actividad enzimática específica de las aceitunas aumentaron durante el período de maduración. Por otro lado, el contenido de fenoles totales, oleuropeína y otros compuestos fenólicos de las aceitunas disminuyó. La altitud y la ubicación de los frutos en el árbol afectaron el proceso de maduración, las altitudes más bajas y el lado del árbol que mira al mar aumentaron la actividad enzimática, ayudando a la maduración.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aktas AB, Ozen B, Tokatli F, Sen I. 2014. Phenolics profile of a naturally debittering olive in comparison to regular olive varieties. J. Sci. Food Agric. 94, 691-698.

Borges TH, Pereira JA, Cabrera-Vique C, Lara L, Oliveira AF, Seiquer I. 2017. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem. 215, 454-462.

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248-254.

Di Vaio C, Nocerino S, Paduano A, Sacchi R. 2013. Influence of some environmental factors on drupe maturation and olive oil composition. J. Sci. Food Agric. 93, 1134-1139.

Ebrahimzadeh H, Motamed N, Rastgar-Jazii F, Montasser-Kouhsari S, Shokraii EH. 2003. Oxidative enzyme activities and soluble protein content in leaves and fruits of olives. J. Food Biochem. 27, 181-196.

García-Vico L, García-Rodríguez R, Sanz C, Pérez AG. 2017. Biochemical aspects of olive freezing-damage: Impact on the phenolic and volatile profiles of virgin olive oil. LWT-Food Science and Technology, 86, 240-246.

Gómez-Del-Campo M, García JM. 2012. Canopy fruit location can affect olive oil quality in “Arbequina” hedgerow orchards. J. Am. Oil Chem. Soc. 89, 123-133.

Gutiérrez-Rosales F, Romero MP, Casanovas M, Motilva MJ, Mínguez-Mosquera MI. 2012. β-Glucosidase involvement in the formation and transformation of oleuropein during the growth and development of olive fruits (Olea Europaea L. Cv. Arbequina) grown under different farming practices. J. Agric. Food Chem. 60 (17), 4348-4358.

Hrncirik K, Fritsche S. 2004. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 106, 540-549.

Hu Y, Luan H, Hao D, Xiao H, Yang S, Yang L. 2007. Purification and characterization of a novel ginsenoside-hydrolyzing β-D-glucosidase from the China white jade snail (Achatina Fulica). Enzyme Microb. Technol. 40, 1358-1366.

Koudounas K, Banilas G, Michaelidis C, Demoliou C, Rigas S, Hatzopoulos P. 2015. A defence-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. J. Experiment. Bot. 66, 2093-2106.

Lopez-Huertas E, del Río LA. 2014. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. J. Plant Physiol. 171, 1463-1471.

Menz G, Vriesekoop F. 2010. Physical and chemical changes during the maturation of gordal sevillana olives (Olea europaea L., cv. Gordal Sevillana). J. Agric. Food Chem. 58, 4934-4938.

Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ. 2010. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 30, 923-934.

Morello JR, Vuorela S, Romero MP, Motilva MJ, Heinonen M. 2005. Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 53, 2002-2008.

Mousa YM, Gerasopoulos D, Metzidakis I, Kiritsakis A. 1996. Effect of altitude on fruit and oil quality characteristics of “Mastoides” olives. J. Sci. Food Agric. 71, 345-350.

Ortega-García F, Blanco S, Peinado MÁ, Peragón J. 2008. Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. “Picual” trees during fruit ripening. Tree Physiol. 28, 45-54.

Padilla MN, Hernández ML, Sanz C, Martínez-Rivas JM. 2014. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp. Phytochem. 102, 80-88.

Parkin KL, Marangoni, A, Jackman RL, Yada RY, Stanley DW. 1989. Chilling Injury, A Review of Possible Mechanisms. J. Food Biochem. 13(2), 127-153.

Rallo L, Díez CM, Morales-Sillero A, Miho H, Priego-Capotec F, Rallo P. 2018. Quality of olives: A focus on agricultural preharvest factors. Sci. Horticult. 233, 491-509.

Ramírez E, Gandul-Rojas B, Romero C, Brenes M, Gallardo-Guerrero L. 2015. Composition of pigments and colour changes in green table olives related to processing type. Food Chem. 166, 115-124.

Ramírez E, Brenes M, García P, Medina E, Romero C. 2016. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chem. 206, 204-209.

Rigane G, Salem RB, Sayadi S, Bouaziz M. 2011. Phenolic composition, isolation, and structure of a new deoxyloganic acid derivative from Dhokar and Gemri-Dhokar olive cultivars. J. Food Sci. 76, C965-C973.

Romero C, Ruiz-Méndez MV, Brenes M. 2016. Bioactive Compounds in Virgin Olive Oil of the PDO Montoro-Adamuz, J. Am. Oil Chem. Soc. 93, 665-672.

Romero-Segura C, Sanz C, Perez AG. 2009. Purification and characterization of an olive fruit β-glucosidase involved in the biosynthesis of virgin olive oil phenolics. J. Agric. Food Chem. 57, 7983-7988.

Romero-Segura C, García-Rodríguez R, Sánchez-Ortiz A, Sanz C, Pérez AG. 2012. The role of olive β-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Internat. 45, 191-196.

Sousa A, Malheiro R, Casal S, Bento A, Pereira JA. 2015. Optimal harvesting period for cvs. Madural and Verdeal Transmontana, based on antioxidant potential and phenolic composition of olives. LWT-Food Sci. Technol. 62, 1120-1126.

Susamci E, Ozturk Gungor F, Irmak S, Ataol Olmez H, Tusu G. 2016. A study on the nutritional value of Hurma olives (Erkence cv.) that lose the bitterness on the tree. J. Agric. Sci. 22(4), 471-479.

Susamci E, Romero C, Tuncay O, Brenes M. 2017. An explanation for the natural de-bittering of Hurma olives during ripening on the tree. Grasas Aceites 68, 1-8.

Talhaoui N, Gómez-Caravaca AM, León L, De La Rosa R, Fernández-Gutiérrez A, Segura-Carretero A. 2015. Pattern of variation of fruit traits and phenol content in olive fruits from six different cultivars. J. Agric. Food Chem. 63, 10466-10476.

Tombesi A, Boco M, Pilli M. 1998. Fruit microclimate: effect of light on growth and on oil synthesis. Riv. Frutticolt. Ortofloricolt.60(7/8), 63-67.

Uylaser V. 2015. Changes in phenolic compounds during ripening in Gemlik variety olive fruits obtained from different locations. CyTA J. Food 13, 167-173.

Velázquez-Palmero D, Romero-Segura C, García-Rodríguez R, Hernández ML, Vaistij FE, Graham IA, Pérez AG, Martínez-Rivas JM. 2017. An oleuropein β-glucosidase from olive fruit is involved in determining the phenolic composition of virgin olive oil, Front. Plant Sci. 8, 1-12.

Publicado

2024-07-02

Cómo citar

1.
Susamcı E, Tuncay Ö., Bayraktar H, Önal S. Contenido de fenoles y actividad de β-glucosidasa durante el periodo de maduración de frutos de olivo (Erkence cv.) presentes en diferentes localizaciones. Grasas aceites [Internet]. 2 de julio de 2024 [citado 1 de mayo de 2025];75(2):2017. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2017

Número

Sección

Investigación

Datos de los fondos

Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı
Números de la subvención TAGEM/HSGYAD/14/A05/P02/59