Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1

Authors

  • Hugo S. Garcia Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison
  • In-Hwan Kim Department of Food and Nutrition, College of Health Sciences, Korea University, Seoul
  • Arnoldo López-Hernández Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison
  • Charles G. Hill, Jr Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison

DOI:

https://doi.org/10.3989/gya.2008.v59.i4.531

Keywords:

Fish oil - Interesterification, Omega-3, Phospholipids

Abstract


A commercial phospholipase A1 (Lecitase® Ultra) was immobilized by physical adsorption on Duolite® and then used to mediate the incorporation of omega-3 fatty acids into lecithin. Adsorption isotherms showed that 12 h of contact were sufficient to deposit most of the enzyme onto the carrier. A pH of 7 and 50°C were the best conditions for adsorption. Reaction mixtures consisting of lecithin and a saponified fish oil concentrate (78.4 mol % EPA+DPA+DHA) were prepared at molar ratios ranging from 1:2 to 1:10. Typically 2 g of total substrates and 200 mg of enzyme preparation were employed in batch reactor trials. The fastest reaction rates were observed when a substrate mole ratio of 1:8 (lecithin:total fatty acids) was employed. Use of the enzyme preparation dried at pH 8 and reaction temperatures of 50 and 60°C produced the greatest extent of incorporation of the indicated n-3 fatty acids into the phospholipid after 24h of reaction.

Downloads

Download data is not yet available.

References

Adlercreutz D, Budde, H, Wehtje E. 2002. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnol. Bioeng. 78, 403-411. doi:10.1002/bit.10225

Bradford M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248-254. doi:10.1016/0003-2697(76)90527-3

D’Arrigo P, Servi S. 1997. Using phospholipases for phospholipid modification. TIBTECH 15, 90-96. doi:10.1016/S0167-7799(97)01012-3

De Maria L, Vind J, Oxenbøl KM, Svendsen A, Patkar S. 2007. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 74, 290-300. doi:10.1007/s00253-006-0775-x

Dittrich N, Ulbrich-Hofman R. 2001.Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnol. Appl. Biochem. 34, 189-194. doi:10.1042/BA20010032

Egger D, Wehtje E, Adlercreutz P. 1997. Characterization and optimization of phospholipase A2 catalyzed synthesis of phosphatidylcholine. Biochim. Biophys. Acta 1343, 76-84.

Guo Z, Vikbjerg AF, Xu X. 2005. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol. Adv. 23, 203-259. doi:10.1016/j.biotechadv.2005.02.001

Hara F, Nakashima T. 1996. Transesterification of phospholipids by acetone-dried cells of Rhizopus species immobilized on biomass support particles. J. Am. Oil Chem. Soc. 73, 657-659. doi:10.1007/BF02518123

Haraldsson GG, Thorarensen A. 1999. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J. Am. Oil Chem. Soc. 76, 1143- 1149. doi:10.1007/s11746-999-0087-2

Hosokawa M, Ito M, Takahashi K. 1998. Preparation of highly unsaturated fatty acid-containing phosphatidylcholine by transesterification with phospholipase A2. Biotechnol. Tech. 12, 585-586.

Hossen M, Hernandez E. 2005. Enzyme catalyzed synthesis of structured phospholipids with conjugated linoleic acid. Eur. J. Lipid Sci. Technol. 107, 730-736. doi:10.1002/ejlt.200501190

Joshi A, Paratkar SG, Thorat BN. 2006. Modification of lecithin by physical, chemical and enzymatic methods. Eur. J. Lipid Sci. Technol. 108, 363-373. doi:10.1002/ejlt.200600016

Kim IH, Garcia HS, Hill Jr. CG. 2007. Phospholipase A1- catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enz. Microb. Technol. 40, 1130-1135. doi:10.1016/j.enzmictec.2006.08.018

Kim J, Lee CS, Oh J, Kim BG. 2001. Production of egg yolk lysolecithin with immobilized phospholipase A2. Enz. Microb. Technol. 29, 587-592. doi:10.1016/S0141-0229(01)00447-1

Lilja-Hallberg M, Härröd M. 1995. Enzymatic and nonenzymatic esterification of long polyunsaturated fatty acids and lysophosphatidylcholine in isooctane. Biocatal. Biotransfor. 12, 55-66. doi:10.3109/10242429508998151

Madoery R, Gattone CG, Fidelio G. 1995. Bioconversion of phospholipids by immobilized phospholipase A2. J. Biotechnol. 40, 145-153. doi:10.1016/0168-1656(95)00040-W

Mustranta A, Forssell P, Poutanen K. 1995. Comparison of lipases and phospholipases in the hydrolysis of phospholipids. Proc. Biochem. 30, 393-401. doi:10.1016/0032-9592(94)00030-L

Mutua LN, Akoh CC. 1993. Lipase-catalyzed modification of phospholipids: incorporation of n-3 fatty acids into biosurfactants. J. Am. Oil Chem. Soc. 70, 125-128. doi:10.1007/BF02542613

Peng L, Xu X, Mu H, Høy CE, Adler-Nissen J. 2002. Production of phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enz. Microb. Technol. 31, 523-532. doi:10.1016/S0141-0229(02)00147-3

Reddy JRC, Vijeeta T, Karuna MSL, Rao BVSK, Prasad RBN. 2005. Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. J. Am. Oil Chem. Soc. 82, 727-730. doi:10.1007/s11746-005-1134-x

Servi S. 1999. Phospholipases as synthetic catalysts. In: WD Fessner (Ed.) Biocatalysis - From Discovery to Application (Topics in Current Chemistry). pp 127- 158. Springer Verlag, Berlin. doi:10.1007/3-540-68116-7_5

Totani Y, Hara S. 1991. Preparation of polyunsaturated phospholipids by lipase-catalyzed transesterification. J. Am. Oil Chem. Soc. 68, 848-851. doi:10.1007/BF02660600

Van Nieuwenhuyzen W. 1981. The industrial uses of special lecithins: a review. J. Am. Oil Chem. Soc. 58, 886-888. doi:10.1007/BF02659651

Vijeeta T, Reddy JRC, Rao BVSK, Karuna MSL, Prasad RBN. 2004. Phospholipase-mediated preparation of 1-ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine from soya and egg phosphatidylcholine. Biotechnol. Lett. 26, 1077-1080. doi:10.1023/B:BILE.0000032968.56387.45

Vikbjerg AF, Mu H, Xu X. 2005a. Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: a critical evaluation of both acyl incorporation and product recovery. Biotechnol. Prog. 21, 397-404. doi:10.1021/bp049633y

Vikbjerg AF, Mu H, Xu X. 2006. Elucidation of acyl migration during lipase-catalyzed production of structured phospholipids. J. Am. Oil Chem. Soc. 83, 607-614. doi:10.1007/s11746-006-1246-3

Vikbjerg AF, Mu H, Xu X. 2007. Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. J. Biotechnol. 128, 545-554. doi:10.1016/j.jbiotec.2006.11.006

Vikbjerg AF, Peng L, Mu H, Xu X. 2005b. Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. J. Am. Oil Chem. Soc. 82, 237-242. doi:10.1007/s11746-005-1061-x

Wang XG, Qiu AY, Tao WY, Shen PY. 1997. Synthesis of phosphatidylglycerol from soybean lecithin with immobilized Phospholipase D. J. Am. Oil Chem. Soc. 74, 87-91. doi:10.1007/s11746-997-0149-2

Downloads

Published

2008-12-30

How to Cite

1.
Garcia HS, Kim I-H, López-Hernández A, Hill, Jr CG. Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. grasasaceites [Internet]. 2008Dec.30 [cited 2023Feb.7];59(4):368-74. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/531

Issue

Section

Research

Most read articles by the same author(s)