Effects of sodium substitution with potassium in brines for packing natural black olives of the criolla cultivar

Authors

DOI:

https://doi.org/10.3989/gya.1200232.2251

Keywords:

Black olives, Potassium chloride, Salt mixture, Sensory perceptions

Abstract


The high global sodium consumption presents a significant challenge to public health. In response to this issue, the olive industry has been trying to use substitutes with lower sodium content for the production of table olives. Therefore, the objective of this study was to evaluate the effect of five mixtures of NaCl and KCl salts (40/60, 30/70, 70/30, 50/50, and 60/40 respectively), compared to a reference treatment containing only NaCl, and to analyze both sensory perception and physicochemical and microbiological parameters. The results did not reveal any statistically significant differences in sensory profiles (p-value = 0.4226), indicating that the partial substitution of NaCl with KCl does not negatively affect the sensory attributes of olives. These findings were supported by physicochemical and microbiological analyses that met the parameters and standards established by current regulations. Therefore, potassium chloride could be a viable substitute for sodium content reduction without compromising the quality and preservation of the product.

Downloads

Download data is not yet available.

References

Anagnostopoulos DA, Tsaltas D. 2022. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front. Microbiol. 12, 797295.

Bansal S, Rani S. 2014. Studies on replacement of sodium chloride with potassium chloride in lemon (Citrus limon) pickles. Asian J. Dairy Foods Res. 33, 32-36.

Bautista-Gallego J, Arroyo López FN, Romero Gil V, Rodríguez Gómez F, García García P, Garrido Fernández A. 2011. Chloride salt mixtures affect Gordal cv. green Spanish-style table olive fermentation. Food Microbiol. 28, 1316–1325.

Bautista-Gallego J, Rodríguez-Gómez F, Romero-Gil V, Benítez-Cabello A, Arroyo-López FN, Garrido-Fernández A. 2018. Reduction of the Bitter Taste in Packaged Natural Black Manzanilla Olives by Zinc Chloride. Front. Nutr. 5, 102.

Clavijo C, Garragate W, Gallegos M, Lanchipa P, Villalobos C. 2013. Effect of aeration and sodium chloride concentration on the development of microbiological flora and physicochemical parameters during the fermentation of Olea europaea L. c.v. Sevillana in the natural black style in the La Yarada-Tacna. Grasas Aceites 64, 320–327.

Conte P, Fadda C, Del Caro A, Urgeghe PP, Piga A. 2020. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 9, 514.

Degirmencioglu N. 2016. Modern Techniques in the Production of Table Olives, in: Boskou D, Clodoveo ML (Eds.), Products from Olive Tree. InTech.

Fernández AG, Díez MJF, Adams MR. 1997. Table Olives. Springer US, Boston, MA.

González M, Navarro T, Gómez G, Pérez RA, de Lorenzo C. 2007. Análisis sensorial de aceituna de mesa: I Configuración de un grupo de cata y obtención de escalas normalizadas. Grasas Aceites 58, 225–230.

International Olive Council. 2004. Commercial standard applicable to table olives. COI/OT/NC 1. Available from: https://goo.su/hVspG

International Olive Council. 2021. Method for the Sensory Analysis of Table Olives; COI/OT/MO No 1/Rev.3. Available from: https://goo.su/TCU5n

International Olive Council. 2022. Economic affairs and promotion unit. European table olive production. Available from: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/#figures

Julca I, Marcet-Houben M, Cruz F, Gómez-Garrido J, Gaut BS, Díez CM, Gut IG, Alioto TS, Vargas P, Gabaldón T. 2020. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol. 18, 148.

Lanza B, Amoruso F. 2016. Sensory analysis of natural table olives: Relationship between appearance of defect and gustatory-kinaesthetic sensation changes. LWT - Food Sci. Technol. 68, 365–372.

Lanza B, Di Serio MG, Iannucci E. 2013. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table olives. Grasas Aceites 64, 272–284.

López-López A, Moreno-Baquero JM, Garrido-Fernández A. 2023. Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging. Foods 12, 3561.

Medina E, Brenes M, Romero C, Ramírez E, De Castro A. 2013. Survival of foodborne pathogenic bacteria in table olive brines. Food Control 34, 719–724.

Ministry of Health of Peru. 2008. Sanitary Standard that establishes the microbiological criteria of sanitary quality and safety for food and beverages for human consumption R.M N° 591-2008/MINSA. Lima, Peru. Available from: https://goo.su/1hr4WV

Mocanu G-D, Nistor O-V, Constantin OE, Andronoiu DG, Barbu VV, Botez E. 2022. The Effect of Sodium Total Substitution on the Quality Characteristics of Green Pickled Tomatoes (Solanum lycopersicum L.). Molecules 27, 1609.

Moreno-Baquero JM, Bautista-Gallego J, Garrido-Fernández A, López-López A. 2013. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures. Food Chem. 138, 1–8.

Panagou EZ, Tassou CC, Skandamis PN. 2006. Physicochemical, Microbiological, and Organoleptic Profiles of Greek Table Olives from Retail Outlets. J. Food Protect. 69, 1732–1738.

Pino A, De Angelis M, Todaro A, Van Hoorde K, Randazzo CL, Caggia C. 2018. Fermentation of Nocellara Etnea Table Olives by Functional Starter Cultures at Different Low Salt Concentrations. Front. Microbiol. 9, 1125.

Pires-Cabral P, Barros T, Nunes P, Quintas C. 2018. Physicochemical, nutritional and microbiological characteristics of traditional table olives from Southern Portugal. Emir. J. Food Agric. 30 (7), 611–620.

Randazzo CL, Russo N, Pino A, Mazzaglia A, Ferrante M, Oliveri Conti G, Caggia C. 2018. Effects of Selected Bacterial Cultures on Safety and Sensory Traits of Nocellara Etnea Olives Produced at Large Factory Scale. Food Chem.Toxicol. 115, 491–498.

Rejano L, Montaño A, Casado FJ, Sánchez AH, De Castro A. 2010. Table Olives, in: Olives and Olive Oil in Health and Disease Prevention. Elsevier, pp. 5–15.

Rocha J, Borges N, Pinho O. 2020. Table olives and health: a review. J. Nutr. Sci. 9, e57. https://doi.org/10.1017/jns.2020.50

Sales H, Šatović Z, Alves ML, Fevereiro P, Nunes J, Vaz Patto MC. 2021. Accessing Ancestral Origin and Diversity Evolution by Net Divergence of an Ongoing Domestication Mediterranean Olive Tree Variety. Front. Plant Sci. 12, 688214.

Saúde C, Barros T, Mateus T, Quintas C, Pires-Cabral P. 2017. Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar. Food Biosci. 19, 73–79.

Torres M, Pierantozzi P, Searles P, Rousseaux MC, García-Inza G, Miserere A, Bodoira R, Contreras C, Maestri D. 2017. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments. Front. Plant Sci. 8, 1830.

Wang Y-J, Yeh T-L, Shih M-C, Tu Y-K, Chien K-L. 2020. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 12, 2934.

Published

2024-12-30

How to Cite

1.
Chata Y, Mamani A, Gallegos-Arata M, Cartagena-Cutipa R. Effects of sodium substitution with potassium in brines for packing natural black olives of the criolla cultivar. Grasas aceites [Internet]. 2024Dec.30 [cited 2025May2];75(4):2251. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2251

Issue

Section

Research