Cinética de oxidación del aceite de avellana tratado con ozono
DOI:
https://doi.org/10.3989/gya.0664171Palabras clave:
Aceite de avellanas, Cinética de oxidación, DSC, OzonoResumen
El presente estudio investiga la cinética de oxidación del aceite de avellana ozonizado durante diferentes períodos (1, 5, 60 y 180 min). La constante de velocidad cinética (k) se tomó como la inversa del tiempo de inicio de la oxidación (To) observando una relación lineal cuando se representa el lnTo con las temperaturas isotérmicas (373, 383, 393 y 403 K) llevadas a cabo en calorimetría de barrido diferencial. Los parámetros cinéticos, energía de activación (Ea), entalpía de activación (ΔH‡) y entropía (ΔS‡) se calcularon sobre la base de la ecuación de Arrhenius y de la teoría compleja activada. Los valores de k mostraron un aumento exponencial con el aumento del tiempo de tratamiento de ozono. El aumento de k se correlacionó bien con el aumento de peróxidos y de los ácidos grasos libres de todas las muestras. Ea y ΔH‡ de los aceites tratados con ozono mostraron una tendencia reductora que refleja una mayor sensibilidad a la oxidación de los aceites después del tratamiento con ozono. Consistentemente, un aumento de ΔS‡ indicó una reacción de oxidación más rápida con un aumento del tiempo de exposición al ozono. Sin embargo, no se observó diferencia significativa en k, Ea, ΔH‡, ΔS‡ (p < 0.05) en función del período de almacenamiento, después de que el aceite de avellana fue tratado con ozono durante 1 min.
Descargas
Citas
Alasalvar C, Shahidi F, Ohshim T, Wanasundara U, Yurttas HC, Liyanapathirana CM. 2003. Turkish tombul hazelnut (Corylus FFAellana L.), 2. Lipid characteristics and oxidative stability. J. Agric. Food Chem. 51, 3797–3805. https://doi.org/10.1021/jf021239x PMid:12797746
Atkins P, De Paua J. 2006. Physical Chemistry for the Life Sciences. New York: Oxford University Press, pp. 256–259.
Bailey PS. 1982. Ozonation in organic chemistry, 2: Non olefinic compounds. San Diego, USA: Academic Press.
Balta MF, Yarılgaç T, A?kın MA, Kuçuk M, Balta F, Özrenk K.2006. Determination of fatty acid compositions oil contents and some quality traits of hazelnut genetic resources grown in eastern Anatolia of Turkey. J. Food Compos. Anal. 19, 681–686. https://doi.org/10.1016/j.jfca.2005.10.007
Chapman TM, Kim HJ, Min DB. 2009. Prooxidant Activity of Oxidized ?-Tocopherol in Vegetable Oils. Food Chem. 74, 536– 542. https://doi.org/10.1111/j.1750-3841.2009.01262.x
Charoux CMG, Ojha KS, O'Donnell CP, Cardoni A, Tiwari BK. 2017. Applications of airborne ultrasonic technology in the food industry. J. Food Eng. 208, 28–36. https://doi.org/10.1016/j.jfoodeng.2017.03.030
Chen R, Maa F, Li P, Zhang W, Ding X, Zhang Q, Li M, Wanga Y, Xu,B. 2014. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chem. 146, 284– 288. https://doi.org/10.1016/j.foodchem.2013.09.059 PMid:24176344
Criegee R. 1975. Mechanism of Ozonolysis. Angew. Chem. Int. Edit. 14, 745–752. https://doi.org/10.1002/anie.197507451
Firestone D. 1993. AOCS, Official methods and recommended practices of the American oil chemists' society (4th ed.), Champaign, Illinois: American Oil Chemists's Society.
Fu M, Qu Q, Yang X, Zhang X. 2016. Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. Food Sci. Technol.- LEB 65, 1126–1132.
Guzel-Seydim ZB, Greene AK, Seydim AC. 2004. Use of ozone in the food industry. Food Sci. Technol.-LEB 37,453–460.
Jung MY, Min DB. 1990. Effects of ? -, ? -, and ?-tocopherols on the oxidative stability of purified soybean oil. J. Food Sci. 55, 1464–1465. https://doi.org/10.1111/j.1365-2621.1990.tb03960.x
Kamal-Eldin A, Budilarto E. 2015. Tocopherols and tocotrienols as antioxidants for food preservation. Handbook of Antioxidants for Food Preservation Elsevier, 141–159. https://doi.org/10.1016/B978-1-78242-089-7.00006-3
Kornsteiner M, Wagner KH, Elmadfa I. 2006. Tocopherols and total phenolics in 10 different nut types. Food Chem. 98, 381– 387. https://doi.org/10.1016/j.foodchem.2005.07.033
Laidler KJ. 1987. Chemical Kinetics, Harper and Row, New York. PMid:3683196
Marriott N.G. 1994. Principles of food sanitation (3rd ed.), Chapman & Hall: New York, NY. https://doi.org/10.1007/978-1-4757-6263-1
Micic MM, Ostojic SB, Simonovic, MB, Krstic G, Pezo LL, Simonovic BR. 2015. Kinetics of blackberry and raspberry seed oils oxidation by DSC. Thermochim. Acta 601, 39–44. https://doi.org/10.1016/j.tca.2014.12.018
Miller BM, Sauer A, Moraru CI. 2012. Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. J. Dairy Sci. 95, 5597–5603. https://doi.org/10.3168/jds.2012-5714 PMid:22901489
Moore WJ. 1972. Physical Chemistry (5th ed.); London: Longman, pp. 381–387.
Moureu S. 2016. Influence of Storage Temperature on the Composition and the Antibacterial Activity of Ozonized Sunflower Oil. Ozone-Sci. Eng. 38, 143–149. https://doi.org/10.1080/01919512.2015.1128319
Naumov VV, Vasil'ev RF. 2003. Antioxidant and pro-oxidant effects of tocopherol. Kinet. Catal. 44, 101–105. https://doi.org/10.1023/A:1022528919697
Oner ME, Demirci A. 2016. Ozone for Food Decontamination Handbook of Hygiene Control in the Food Industry pp. 491– 501. https://doi.org/10.1016/B978-0-08-100155-4.00033-9
Parcerisa J, Casals I, Boatella J, Codony R, Rafecas M. 2000. Analysis of olive and hazelnut oil mixtures by high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry of triacylglycerols and gas–liquid chromatography of non-saponifiable compounds (tocopherols and sterols). J. Chromatogr. A 881, 149–158. https://doi.org/10.1016/S0021-9673(00)00352-6
Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Filho GNR. 2011. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresource Technol. 102, 5873–5877. https://doi.org/10.1016/j.biortech.2011.02.022 PMid:21411317
Prakash, A. 2013. Non- thermal processing technologies to improve the safety of nuts. Improving the Safety and Quality of Nuts. (Ed. L. Harris). Series in Food Science, Technology and Nutrition, Chapter 3. Woodhead Publishing Limited, pp. 35–55.
Ross AIV, Griffiths MW, Mittal GS, Deeth HC. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89, 125–138. https://doi.org/10.1016/S0168-1605(03)00161-2
Sadowska J, Johansson B, Johannessen E, Friman R, Broniarz- Press L, Rosenholm JB. 2008. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods. Chem. Phys. Lipids 151, 85–91. https://doi.org/10.1016/j.chemphyslip.2007.10.004 PMid:18023273
Sanz-Puig M, Santos-Carvalho L, Cunha LM, Pina-Pérez MC, Martínez A, Rodrigo D. 2016. Effect of pulsed electric fields (PEF) combined with natural antimicrobial by-products against S. Typhimurium. Innov. Food Sci. Emerg. 37, 322–328. https://doi.org/10.1016/j.ifset.2016.09.004
Sega A, Zanardi I, Chiasserini L, Gabbrielli A, Bocci V, Travagli V. 2010. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem. Phys. Lipids 163,148–156. https://doi.org/10.1016/j.chemphyslip.2009.10.010
Seydim AC, Ertekin B. 2006. Effect of various packaging materials on hazelnut oil quality during storage. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 10, 341–345.
Skalska K, Ledakowicz S, Perkowski J, Sencio B. 2009. Germicidal Properties of Ozonated Sunflower Oil. Ozone Sci. Eng. 31, 232–237. https://doi.org/10.1080/01919510902838669
Song HP, Kim DH, Jo C, Lee CH, Kim KS, Byun MW. 2006. Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol. 23, 372–378. https://doi.org/10.1016/j.fm.2005.05.010 PMid:16943027
Souza AG, Santos JCO, Conceição MM, Silva MCD, Prasad SA. 2004. A thermoanalytic and kinetic study of sunflower oil. Braz. J. Chem. Eng. 21, 265–273. https://doi.org/10.1590/S0104-66322004000200017
Syed A. 2016. Oxidative Stability and Shelf Life of Vegetable Oils, Oxidative Stability and Shelf Life of Foods Containing Oils and Fats, pp. 187–207. https://doi.org/10.1016/B978-1-63067-056-6.00004-5
Tan CP, Che Man YB. 1999. Differential Scanning Calorimetric Analysis for monitoring the oxidation of heated oils. Food Chem. 67, 177–184. https://doi.org/10.1016/S0308-8146(99)00115-6
Tan CP, Man CH, Selamat C, Yusoff MSA. 2001. Application of arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. J. Am. Oil Chem. Soc. 78, 1133–1138. https://doi.org/10.1007/s11746-001-0401-1
Thurgood J, Ward R, Martini S. 2007. Oxidation kinetics of soybean oil/anhydrous milk fat blends: A differential scanning calorimetry study. Food Res. Int. 40, 1030–1037. https://doi.org/10.1016/j.foodres.2007.05.004
Turkish Standards. 2003. Edible Refined Hazelnut Oil, (TS 6581), Ankara, Turkish Standards Institute.
USDA. 1997. Code of Federal Regulations, Title 9, Part 381.66, poultry products; temperatures and chilling and freezing procedures. Office of the Federal Register National Archives and Records Administration, Washington, DC.
Van Boekel MAJS.1996. Statistical Aspects of Kinetic Modelling for Food Science Problems. J. Food Sci. 61, 477–485, 489. https://doi.org/10.1111/j.1365-2621.1996.tb13138.x
Yang PPW, Chen TC. 1979. Effects of ozone treatment on microflora of poultry meat. J. Food Process. Pres. 3, 177–185. https://doi.org/10.1111/j.1745-4549.1979.tb00579.x
Zahardis J, La Franchi BW, Petrucci GA. 2006. Direct observations of polymerization in the oleic acid-ozone heterogenous reaction system by photoelectron resonance capture ionization aerosol mass spectrometry. Atmos. Environ. 40, 1661–1670. https://doi.org/10.1016/j.atmosenv.2005.10.065
Zanardi I, TrFFAagli V, Gabbrielli A, Chiasserini L, Bocci V. 2008. Physico-Chemical Characterization of Sesame Oil Derivatives. Lipids 43, 877–886. https://doi.org/10.1007/s11745-008-3218-x PMid:18679737
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.