Variaciones químicas y estructurales de aceites de avellana y soja después de tratamientos con ozono
DOI:
https://doi.org/10.3989/gya.1098171Palabras clave:
Aceite de avellana, Aceite de soja, FTIR, GC, NMR, Ozono, ViscosidadResumen
En el presente trabajo se investigó el efecto de tratamientos con ozono sobre las propiedades estructurales de aceites de soja (SBO) y avellana (HO). El estudio muestra hallazgos y resultados sobre la oxidación de HO y SBO con ozono que no se habían presentado previamente. Los aceites HO y SBO son tratados con ozono gaseoso durante 1, 5, 15, 30, 60, 180 y 360 min. La reactividad del ozono con SBO y HO durante el tratamiento se analizó mediante 1H, 13C NMR, FTIR y GC. Se midieron las variables: índice de yodo, viscosidad y color (L *, a * y b *) de los aceites no tratados y tratados con ozono. Los productos de reacción se identificaron de acuerdo con el mecanismo de Criegee. Se asignaron nuevas señales a 5,15 y 104,35 ppm a los anillos protónicos de 1,2,4-trioxolano (ozónido secundario) en aceites ozonizados en 1H y 13C RMN, respectivamente. Los aceites ozonizados también mostraron picos a 9,75 y 2,43 ppm en 1H NMR correspondientes al protón aldehídico y al grupo α-metileno, respectivamente. El pico a 43,9 ppm en 13C RMN se relacionó con el C carbonilo del grupo α-metileno. Las nuevas señales formadas en el proceso de ozonización aumentaron gradualmente con respecto al tiempo de tratamiento con ozono. Después de un tratamiento de 360 minutos con ozono, la señal del doble enlace C=C que pertenece a los ácidos grasos insaturados desapareció por completo en el espectro. Se observó un aumento en la viscosidad, una disminución en el índice de yodo, una reducción drástica en b* de muestras de aceite en el eje (+) con el aumento del tiempo de tratamiento con ozono.
Descargas
Citas
Adhvaryu A, Erhan SZ, Liu ZS, Pérez JM. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364, 87–97. https://doi.org/10.1016/S0040-6031(00)00626-2
Alasalvar C, Karamac´ M, Amarowicz R, Shahidi F. 2006. Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. J. Agric. Food Chem. 54, 4826–4832. https://doi.org/10.1021/jf0601259 PMid:16787035
Anachkov MP, Rakovski SK, Stefanova RV. 2000. Ozonolysis of 1,4-cis-polyisoprene and 1,4-trans-polyisoprene in solution. Polym. Deg. Stab. 67, 355–363. https://doi.org/10.1016/S0141-3910(99)00137-8
Atungulu GG, Pan Z. 2012. Microbial Decontamination in the Food Industry. Microbial decontamination of nuts and Spices. 125–162.
Benevides CMJ, Veloso MCC, Pereira PAP, Andrade JB. 2011. A chemical study of ?-carotene oxidation by ozone in an organic model system and the identification of the resulting products. Food Chem. 126, 927–934. https://doi.org/10.1016/j.foodchem.2010.11.082
Beuchat LR. 1992. Surface disinfection of raw produce. Dairy, Food and Environ. Sanit. 12(1), 6–9.
Britton G. 1995. Structure and Properties of carotenoids in relation to function. Fed. Am. Soc. Exp. Biol. 9, 1551–1558. PMid:8529834
Che Man YB, Setiowaty G. 1999. Application of fourier transform infrared spectroscopy to determine free fatty acid contents in palm olein. Food Chem. 66, 109–114. https://doi.org/10.1016/S0308-8146(98)00254-4
Chen R, Maa F, Li P, Zhang W, Ding X, Zhang Q, Li M, Wanga Y, Xu B. 2014. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chem. 146, 284–288. https://doi.org/10.1016/j.foodchem.2013.09.059 PMid:24176344
Criegee R. 1975. Mechanism of Ozonolysis. Angew. Chem. Int. Edit. 14, 745–752. https://doi.org/10.1002/anie.197507451
Díaz MF, Nú-ez N, Quincose D, Díaz W, Hernández F. 2005. Study of Three Sistems of Ozonized Cocunut Oil. Ozone Sci. Eng. 27, 153–157. https://doi.org/10.1080/01919510590925275
Dogan A, Siyakus G, Severcan F. 2007. FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chem. 100, 1106–1114. https://doi.org/10.1016/j.foodchem.2005.11.017
European pharmacopoeia 2004. Iodine value. Council of Europe, 5th edn. Strasbourg Cedex, France, 127–128.
Greene AK, Smith GW, Knight CS. 1999. Ozone in dairy chilling watersystems: Effect on metal materials. Int. J. Dairy Technol. 52, 126–128. https://doi.org/10.1111/j.1471-0307.1999.tb02853.x
Guillén MD, Cabo N. 2000. Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J. Sci. Food Agric. 80, 2028–2036. https://doi.org/10.1002/1097-0010(200011)80:14<2028::AID-JSFA713>3.0.CO;2-4
Guillén MD, Cabo N. 1997. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands of the fingerprint region. J. Am. Oil Chem. Soc. 74, 1281–1286. https://doi.org/10.1007/s11746-997-0058-4
Gunstone FD. 2002. Vegetable Oils in Food Technology: Composition, Properties and Uses. Blackwell Publishing, CRC Press, USA.
Kim J, Kim DN, Lee, SH, Yoo SH, Lee S. 2010. Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake. Food Chem. 118, 398–402. https://doi.org/10.1016/j.foodchem.2009.05.011
King CJ, Blumberg J, Jenab M, Tucker KL. 2008. Tree Nuts and Peanuts as Components of a Healthy Diet. J. Nutr. 138, 1736–1740. https://doi.org/10.1093/jn/138.9.1736S PMid:18716178
Liu HR, White PJ. 1992. Oxidative stability of soybean oils with altered fatty acid compositions. J. Am. Oil Chem. Soc. 53, 528–532. https://doi.org/10.1007/BF02636103
Murray RW. 1968. Mechanism of ozonolysis. Acc. Chem. Res. 1, 313–320. https://doi.org/10.1021/ar50010a004
Nishikawa N, Yamada K, Matsutani S, Higo M, Kigawa H, Inagaki T. 1995. Structures of ozonolysis products of methyl oleate obtained in a carboxylic-acid medium. J. Am. Oil Chem. Soc. 72, 735–740. https://doi.org/10.1007/BF02635664
Prakash A. 2013. Non-thermal processing technologies to improve the safety of nuts. Improving the Safety and Quality of Nuts 35–55.
Pryor WA. 1994. Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radic. Biol. Med. 17, 451–465. https://doi.org/10.1016/0891-5849(94)90172-4
Rice RG, Robson CM, Miller GW, Hill AG. 1981. Uses of ozone in drinking water treatment. J. Am.Water Works As. 73, 44–57. https://doi.org/10.1002/j.1551-8833.1981.tb04637.x
Rocha AMCN, Morais AMMB. 2003. Shelf life of minimally processed apples (cv. Jonagored) determined by colour changes. Food Control 14, 13–20. https://doi.org/10.1016/S0956-7135(02)00046-4
Rodrigues de Almeida Kogawa N, José de Arruda E, Micheletti AC, De Fatima Cepa Matos M, De Oliveira LCS, Pires de Lima D, Pereira Carvalho NC, Dias de Oliveira P, De Castro Cunha M, Ojeda M, Beatriz A. 2015. Synthesis, Characterization, Thermal Behavior, and Biological Activity of Ozonides from Vegetable Oils. RSC Adv. 5, 65427–36. https://doi.org/10.1039/C5RA02798E
Rodriguez EB, Rodriguez-Amaya DB. 2007. Formation of apocarotenoids and epoxycarotenoids from b-carotene by reactions and by autoxidation in model systems and processed foods. Food Chem. 101, 563–572. https://doi.org/10.1016/j.foodchem.2006.02.015
Sadowska J, Johansson B, Johannessen E, Friman R, Broniarz-Press L, Rosenholm JB. 2008. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods. Chem. Phys. Lipids 151, 85–91. https://doi.org/10.1016/j.chemphyslip.2007.10.004 PMid:18023273
Santos JCO, Santos IMG, Conceiça˘o MM, Porto SL, Trindade MFS, Souza AG. 2004. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 75, 419–428. https://doi.org/10.1023/B:JTAN.0000027128.62480.db
Sega A, Zanardi I, Chiasserini L, Gabbrielli A, Bocci V, Travagli V. 2010. Properties of sesame oil by detailed 1 H and 13 C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem. Phys. Lipids 163, 148–156. https://doi.org/10.1016/j.chemphyslip.2009.10.010 PMid:19900426
Silverstein RM, Blaser GC, Morril TC. 1974. Spectrometric Identification of Organic Compounds, 3rd edn., John Wiley and Sons, New York, 73–119.
Skalska K, Ledakowicz S, Perkowski J, Sencio B. 2009. Germicidal Properties of Ozonated Sunflower Oil. Ozone-Sci Eng. 31, 232–237. https://doi.org/10.1080/01919510902838669
Soriano NU, Migo VP, Matsumura M. 2003. Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR. Chem. Phys. Lipids 126, 133–140. https://doi.org/10.1016/j.chemphyslip.2003.07.001 PMid:14623448
Tan CP, Che Man YB. 1999. Differential Scanning Calorimetric Analysis for monitoring the oxidation of heated oils. Food Chem. 67, 177–184. https://doi.org/10.1016/S0308-8146(99)00115-6
Thomas A. 2000. "Fats and Fatty Oils". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a10_173
Tsanev R, Tashkov W, Russeva A. 1998. Content of trans-Fatty Acids in Edible Margarines. J. Am. Oil Chem. Soc. 75, 143–145. https://doi.org/10.1007/s11746-998-0025-8
USDA 1997. Code of Federal Regulations, Title 9, Part 381.66, poultry products; temperatures and chilling and freezing procedures. Office of the Federal Register National Archives and Records Administration, Washington, DC.
Wang T. 2002. Soybean oil. Gunstone FD. (Ed.) Vegetable Oils in Food Technology: Composition, Properties and Uses, Blackwell Publishing, CRC Press, USA.
Wu M, Church DF, Mahier TJ, Barker SA, Pryor W.A. 1992. Separation and spectral data of the six isomeric ozonides from methyl oleate. Lipids 27, 129–135. https://doi.org/10.1007/BF02535812 PMid:1579057
Xu YX, Hanna MA, Josiah SJ. 2007. Hybrid hazelnut oil characteristics and its potential oleochemical application. Ind. Crop. Prod. 26, 69–76. https://doi.org/10.1016/j.indcrop.2007.01.009
Yang PPW, Chen TC. 1979. Effects of ozone treatment on microflora of poultry meat. J. Food Process. Pres. 3, 177–185. https://doi.org/10.1111/j.1745-4549.1979.tb00579.x
Zahardis J, LaFranchi BW, Petrucci GA. 2006. The heterogeneous reaction of particle-phase methyl esters and ozone elucidated by photoelectron resonance capture ionization: Direct products of ozonolysis and secondary reactions leading to the formation of ketones. Int. J. Mass Spectrom. 253, 38–47. https://doi.org/10.1016/j.ijms.2006.02.010
Zanardi I, Travagli V, Gabbrielli A, Chiasserini L, Bocci V. 2008. Physico-chemical characterisation of sesame oil derivatives. Lipids 43, 877–886. https://doi.org/10.1007/s11745-008-3218-x PMid:18679737
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.