Aplicación de EOMs y arcillas naturales para la eliminación de MCPD y EG de aceites comestibles

Autores/as

DOI:

https://doi.org/10.3989/gya.0556211

Palabras clave:

3-MCPD, Aceite de palma, Arcillas naturales, EOM, Ésteres de glicidilo

Resumen


El objetivo de este estudio fue investigar la eliminación de 3-monocloropropano-1,2-diol (3-MCPD) y ésteres de glicidilo (EG) de aceites comestibles mediante el uso de estructuras orgánicas metálicas (EOMs) y arcillas naturales. El aceite modelo se trató en primer lugar con adsorbentes, se seleccionaron titanium (IV) tereftalato de butóxido (Ti-EOM) y caolín como EOM y arcilla natural, respectivamente, para el mejor rendimiento en la eliminación de 3-MCPD y EG. También se investigaron los efectos de las condiciones de tratamiento y se seleccionaron como los mejores parámetros un nivel de adsorbente de 6,0%, un tiempo de tratamiento de 120 min y temperatura de tratamiento de 95ºC. Finalmente, las muestras de aceite de palma se trataron con Ti-EOM y caolín en las condiciones seleccionadas y se obtuvo una eliminación de 3-MCPD y EG de hasta 27% y 58%, respectivamente. En conclusión, los EOMs y las arcillas naturales mostraron un buen potencial para la eliminación de 3-MCPD y EG, y la eficiencia del tratamiento se puede mejorar modificando los adsorbentes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn Y, Choi S, Kwak S-Y. 2020. Remarkable effect of deprotonation on adsorption of 3-MCPD and glycidol on carboxylated Fe-MIL-88s. J. Environ. Chem. Eng. 8, 104456. https://doi.org/10.1016/j.jece.2020.104456

AOCS. 2017. AOCS official method Cd 29c-13, 2- and 3-MCPD fatty acid esters and glycidol fatty acid esters in edible oils and fats by GC/MS, in Official Methods and Recommended Practices of the American Oil Chemists' Society 7 th Edition. AOCS Press, USA.

Arisseto AP, Silva WC, Tivanello RG, Sampaio KA, Vicente E. 2018. Recent advances in toxicity and analytical methods of monochloropropanediols and glycidyl fatty acid esters in foods. Curr. Opin. Food Sci. 24, 36-42. https://doi.org/10.1016/j.cofs.2018.10.014

Bornscheuer UT, Hesseler M. 2010. Enzymatic removal of 3-monochloro-1,2-propanediol (3-MCPD) and its esters from oils. Eur. J. Lipid Sci. Technol. 112, 552-556. https://doi.org/10.1002/ejlt.200900245

Bu F, Lin Q, Zhai Q, Wang L, Wu T, Zheng S-T, Bu X, Feng P. 2012. Two zeolite-type frameworks in one metal-organic framework with Zn24@Zn104 cube-in-sodalite architecture. Angew. Chem. Int. Ed. Engl. 51, 8538-8541. https://doi.org/10.1002/anie.201203425 PMid:22791418

Cheng W-W, Liu G-Q, Wang L-Q, Liu Z-S. 2017a. Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Compr. Rev. Food Sci. Food Saf. 16, 263-281. https://doi.org/10.1111/1541-4337.12251 PMid:33371535

Cheng W, Liu G, Wang X, Han L. 2017b. Adsorption removal of glycidyl esters from palm oil and oil model solution by using acid-washed oil palm wood-based activated carbon: kinetic and mechanism study. J. Agric. Food Chem. 65, 9753-9762. https://doi.org/10.1021/acs.jafc.7b03121 PMid:29045793

Commission Regulation (EU). 2020. Commission Regulation (EU) 2020/1322 of 23 September 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of 3-monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. Commission Regulation (EU), European Commission, Brussels, Belgium.

Custodio-Mendoza JA, Carro AM, Lage-Yusty MA, Herrero A, Valente IM, Rodrigues JA, Lorenzo RA. 2019. Occurrence and exposure of 3-monochloropropanediol diesters in edible oils and oil-based foodstuffs from the Spanish market. Food Chem. 270, 214-222. https://doi.org/10.1016/j.foodchem.2018.07.100 PMid:30174037

Du W, Bai Y-L, Xu J, Zhao H, Zhang L, Li X, Zhang J. 2018. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 402, 281-295. https://doi.org/10.1016/j.jpowsour.2018.09.023

Fallah M, Sohrabnezhad S. 2019. Study of synthesis of mordenite zeolite/MIL-101 (Cr) metal-organic framework compounds with various methods as bi-functional adsorbent. Adv. Powder Technol. 30, 336-346. https://doi.org/10.1016/j.apt.2018.11.011

Furukawa H, Cordova K, Keeffe M, Yaghi O. 2013. The chemistry and applications of metal-organic frameworks. Science 341, 123-444. https://doi.org/10.1126/science.1230444 PMid:23990564

IARC. 2000. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Some Industrial Chemicals (Volume 77). IARC, Lyon, France.

IARC. 2013. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-Water (Volume 101). IARC, Lyon, France.

JECFA. 2016. Evaluation of certain contaminants in food (WHO Technical Report Series No. 1002). WHO, Rome, Italy.

Kyselka J, Matějková K, Šmidrkal J, Berčíková M, Pešek E, Bělková B, Ilko V, Doležal M, Filip V. 2018. Elimination of 3-MCPD fatty acid esters and glycidyl esters during palm oil hydrogenation and wet fractionation. Eur. Food Res. Technol. 244, 1887-1895. https://doi.org/10.1007/s00217-018-3101-9

Larsen JC. 2009. 3-MCPD Esters in Food Products Summary Report. ILSI, Brussels, Belgium.

Lee HJ, We J, Kim JO, Kim D, Cha W, Lee E, Sohn J, Oh M. 2015. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem. Int. Ed. Engl. 54, 10564-10568. https://doi.org/10.1002/anie.201504873 PMid:26193850

Li C, Li L, Jia H, Wang Y, Shen M, Nie S, Xie M. 2016. Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining. Food Chem. 199, 605-611. https://doi.org/10.1016/j.foodchem.2015.12.015 PMid:26776014

Li N, Zhang L, Nian L, Cao B, Wang Z, Lei L, Yang X, Sui J, Zhang H, Yu A. 2015. Dispersive micro-solid-phase extraction of herbicides in vegetable oil with metal-organic framework MIL-101. J. Agric. Food Chem. 63, 2154-2161. https://doi.org/10.1021/jf505760y PMid:25665636

Ma Y, Lin J, Xue Y, Li J, Huang Y, Tang C. 2014. Acid-assisted hydro thermal synthesis and adsorption properties of high-specific-surface metal-organic frameworks. Mater. Lett. 132, 90-93. https://doi.org/10.1016/j.matlet.2014.06.025

MacMahon S, Begley TH, Diachenko GW. 2013. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit. Contam: Part A, 30, 2081-2092. https://doi.org/10.1080/19440049.2013.840805 PMid:24138540

Matthäus B, Pudel F. 2013. Mitigation of 3-MCPD and glycidyl esters within the production chain of vegetable oils especially palm oil. Lipid Technol. 25, 151-155. https://doi.org/10.1002/lite.201300288

Matthäus B, Pudel F, Fehling P, Vosmann K, Freudenstein A. 2011. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 113, 380-386. https://doi.org/10.1002/ejlt.201000300

Minitab. 2010. Minitab statistical software (version 16.1.1). Minitab Inc. State College, Pennsylvania.

Moussa Z, Hmadeh M, Abiad MG, Dib OH, Patra D. 2016. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem. 212, 485-494. https://doi.org/10.1016/j.foodchem.2016.06.013 PMid:27374559

Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi O. 2006. Exceptional chemical and thermal stability of zeolitic ımidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186-10191. https://doi.org/10.1073/pnas.0602439103 PMid:16798880 PMCid:PMC1502432

Peerajit P, Chiewchan N, Devahastin S. 2012. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem. 132, 1891-1898. https://doi.org/10.1016/j.foodchem.2011.12.022

Rahn AKK, Yaylayan VA. 2011. What do we know about the molecular mechanism of 3-MCPD ester formation?. Eur. J. Lipid Sci. Technol. 113, 323-329. https://doi.org/10.1002/ejlt.201000310

Ramli MR, Siew WL, Ibrahim NA, Hussein R, Kuntom A, Abd Razak RA, Nesaretnam K. 2011. Effects of degumming and bleaching on 3-MCPD esters formation during physical refining. J. Am. Oil Chem. Soc. 88, 1839-1844. https://doi.org/10.1007/s11746-011-1858-0

Shimizu M, Moriwaki J, Shiiba D, Nohara H, Kudo N, Katsuragi Y. 2012. Elimination of glycidyl palmitate in diolein by treatment with activated bleaching earth. J. Oleo Sci. 61, 23-28. https://doi.org/10.5650/jos.61.23 PMid:22188803

Spanopoulos I, Bratsos I, Tampaxis C, Kourtellaris A, Tasiopoulos A, Charalambopoulou G, Steriotis TA, Trikalitis PN. 2015. Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. Cryst. Eng. Comm. 17, 532-539. https://doi.org/10.1039/C4CE01667J

SPSS. 1994. SPSS professional statistics 10.1. Chicago, IL, USA.

Stock N, Biswas S. 2012. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933-969. https://doi.org/10.1021/cr200304e PMid:22098087

Strijowski U, Heinz V, Franke K. 2011. Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur. J. Lipid Sci. Technol. 113, 387-392. https://doi.org/10.1002/ejlt.201000323

Vlasova EA, Yakimov SA, Naidenko EV, Kudrik EV, Makarov SV. 2016. Application of metal-organic frameworks for purification of vegetable oils. Food Chem. 190, 103-109. https://doi.org/10.1016/j.foodchem.2015.05.078 PMid:26212947

Wong YH, Goh KM, Nyam KL, Nehdi IA, Sbihi HM, Tan CP. 2019. Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Control 96, 488-493. https://doi.org/10.1016/j.foodcont.2018.10.006

Xiao H, Zhang W, Yao Q, Huang L, Chen L, Boury B, Chen Z. 2019. Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. Appl. Catal. B. 244, 719-731. https://doi.org/10.1016/j.apcatb.2018.11.026

Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP. 2012. The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components. Food Chem. 135, 799-805. https://doi.org/10.1016/j.foodchem.2012.04.144 PMid:22868161

Zulkurnain M, Lai OM, Tan SC, Latip RA, Tan CP. 2013. Optimization of palm oil physical refining process for reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation. J. Agric. Food Chem. 61, 3341-3349. https://doi.org/10.1021/jf4009185 PMid:23464796

Publicado

2022-06-14

Cómo citar

1.
Şahin T, Ok S, Yılmaz E. Aplicación de EOMs y arcillas naturales para la eliminación de MCPD y EG de aceites comestibles. Grasas aceites [Internet]. 14 de junio de 2022 [citado 18 de mayo de 2024];73(2):e461. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1938

Número

Sección

Investigación

Datos de los fondos

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
Números de la subvención 217O361