Estabilidad oxidativa y composición del aceite de semillas de comino negro, irradiadas con microondas, en condiciones de oxidación acelerada
DOI:
https://doi.org/10.3989/gya.0908212Palabras clave:
Aceite de semilla de comino negro, Ácidos grasos, Estabilidad oxidativa, Pretratamiento de microondasResumen
En el presente trabajo se evaluó el impacto del pretratamiento de las semillas de comino negro con microondas sobre la estabilidad durante el almacenamiento, los ácidos grasos y las especies de triacilgliceroles del aceite de las semillas de comino negro (BCO) durante el almacenamiento a 62 ºC. Durante el almacenamiento de los aceites, los indicadores oxidativos (acidez libre, peróxidos, p-anisidina, TOTOX, extinciones específicas y ácido tiobarbitúrico) aumentaron más rápidamente en los aceites de semillas sin tratar que en los de las muestras tratadas con microondas. La degradación durante el almacenamiento de los ácidos grasos poliinsaturados (PUFA) y las especies de triacilgliceroles (LLL y OLL) fue mayor en las muestras no tratadas en comparación con las tratadas, lo que indica que la oxidación avanzó más lentamente en las muestras tratadas. Durante el almacenamiento, la generación de hidroperóxidos, su degradación y la formación de productos de oxidación secundarios investigados por FTIR, fueron menores en los aceites tratados. En conclusión, el pretratamiento con microondas de las semillas antes de la extracción del aceite redujo la degradación oxidativa de los aceites, lo que aumentó la estabilidad de almacenamiento de BCO.
Descargas
Citas
Ali MA, Islam MA, Othman NH, Noor AM. 2017b. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil. J. Food Sci. Technol. 54, 4335-4343. https://doi.org/10.1007/s13197-017-2904-1 PMid:29184239 PMCid:PMC5686013
Ali MA, Nargis A, Othman NH, Noor AF, Sadik G, Hossen J. 2017a. Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. Int. J. Food Prop. 20, 2569-2580. https://doi.org/10.1080/10942912.2016.1244544
Anjum F, Anwar F, Jamil A, Iqbal M. 2006. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. J. Am. Oil Chem. Soc. 83, 777-784. https://doi.org/10.1007/s11746-006-5014-1
AOCS. 1987. Official methods and recommended practices of the American Oil Chemists' Society. 4th edn. AOCS press, Champaign.
Azadmard-Damirchi S, Habibi-Nodeh F, Hesari J, Nemati M, Achachlouei BF. 2010. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 121, 1211-1215. https://doi.org/10.1016/j.foodchem.2010.02.006
Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM, Farzaneh V. 2017. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds' oil. Ind. Crops Prod. 97, 1-9. https://doi.org/10.1016/j.indcrop.2016.12.005
Belitz H, Grosch W. 1999. Food Chemistry (2nd edn.). Heidelberg: Springer-Verlag Berlin. https://doi.org/10.1007/978-3-662-07281-3
Đurđević S, Milovanović S, Šavikin K, Ristić M, Menković N, Pljevljakušić D, Petrović S, Bogdanović A. 2017. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crops Prod. 104, 21-27. https://doi.org/10.1016/j.indcrop.2017.04.024
Farag RS, Hewedp FM, Abu-Raiia SH, El-Baroty GS. 1992. Comparative study on the deterioration of oils by microwave and conventional heating. J. Food Prot. 55, 722-727. https://doi.org/10.4315/0362-028X-55.9.722 PMid:31084125
Fathi-Achachlouei B, Azadmard-Damirchi S, Zahedi Y, Shaddel R. 2019. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crops Prod. 128, 527-533. https://doi.org/10.1016/j.indcrop.2018.11.034
Guillen MD, Cabo N. 1997. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1-11. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R
Jan K, Ahmad M, Rehman S, Gani A, Khaqan K. 2019. Effect of roasting on physicochemical and antioxidant properties of kalonji (Nigella sativa) seed flour. J. Food Meas. Charact. 13, 1364-1372. https://doi.org/10.1007/s11694-019-00052-4
Karrar E, Sheth S, Wei W, Wang X. 2020. Effect of microwave heating on lipid composition, oxidative stability, color value, chemical properties, and antioxidant activity of gurum (Citrulluslanatus var. Colocynthoide) seed oil. Biocatal. Agric. Biotechnol. 23, 101504. https://doi.org/10.1016/j.bcab.2020.101504
Kiralan M, Kiralan SS, Ozkan Ramadan MF. 2020. Composition and functionality of Nigella sativa fixed oil, in Ramadan, MF. (Ed.) Black cumin (Nigella sativa) Seeds: Chemistry, Technology, Functionality, and Applications, Springer, pp. 319-333. https://doi.org/10.1007/978-3-030-48798-0_20
Kiralan M, Ramadan MF. 2016. Volatile oxidation compounds and stability of safflower, sesame and canola cold-pressed oils as affected by thermal and microwave treatments. J. Oleo Sci. 65, 825-833. https://doi.org/10.5650/jos.ess16075 PMid:27725480
Lee J, Kim M, Choe E. 2007. Antioxidant activity of lignan compounds extracted from roasted sesame oil on the oxidation of sunflower oil. Food Sci. Biotechnol. 16, 981-987.
Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF. 2010. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 118, 78-83. https://doi.org/10.1016/j.foodchem.2009.04.092
Mazaheri Y, Torbati M, Azadmard-Damirchi S, Savage GP. 2019. Effect of roasting and microwave pretreatments of Nigella sativa L. seeds on lipase activity and the quality of the oil. Food Chem. 274, 480-486. https://doi.org/10.1016/j.foodchem.2018.09.001 PMid:30372968
Mazaheri Y, Torbati M, Azadmard-Damirch S. 2021. Effect of processing on the composition and quality of Nigella sativa fixed oil, in Ramadan, MF (Ed.) Black Cumin (Nigella sativa) Seeds: Chemistry, Technology, Functionality, and Applications, Springer, pp. 335-347. https://doi.org/10.1007/978-3-030-48798-0_21
Moharam MA, Abbas LM. 2010. A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy. Afr. J. Microbiol. Res. 4, 1921-1927.
Piras A, Rosab A, Marongiua B, Porceddaa S, Falconieric D, Dessib MA, Ozcelikd B, Koca U. 2013. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod. 46, 317-323. https://doi.org/10.1016/j.indcrop.2013.02.013
PORIM. 1995. PORIM test methods. Palm Oil Research Institute of Malaysia, Malaysia.
Ramadan MF. 2013. Healthy blends of high linoleic sunflower oil with selected cold pressed oils: functionality, stability and antioxidative characteristics. Ind. Crops Prod. 43, 65-72. https://doi.org/10.1016/j.indcrop.2012.07.013
Smith SA, King RE, Min DB. 2007. Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem. 102, 1208-1213. https://doi.org/10.1016/j.foodchem.2006.06.058
Suri K, Singhb B, Kaur A, Madhav P, Yadav, Singh N. 2019. Impact of infrared and dry air roasting on the oxidative stability, fatty acid composition, Maillard reaction products and other chemical properties of black cumin (Nigella sativa L.) seed oil. Food Chem. 295, 537-547. https://doi.org/10.1016/j.foodchem.2019.05.140 PMid:31174793
Valdés A, Beltrán A, Karabagias I, Badeka A, Kontominas MG, Garrigós MC. 2015. Monitoring the oxidative stability and volatiles in blanched, roasted and fried almonds under normal and accelerated storage conditions by DSC, thermogravimetric analysis and ATR-FTIR. Eur. J. Lipid Sci. Technol. 117, 1199-1213. https://doi.org/10.1002/ejlt.201400384
Wai WT, Saad B, Lim BP. 2009. Determination of TOTOX value in palm olein using a FI- potentiometric analyzer. Food Chem. 113, 285-290. https://doi.org/10.1016/j.foodchem.2008.06.082
Yoshida H, Takagi S, Mitsuhashi S. 1999. Tocopherol distribution and oxidative stability of oils prepared from the hypocotyl of soybeans roasted in a microwave oven. J. Am. Oil Chem. Soc. 76, 915-920. https://doi.org/10.1007/s11746-999-0106-3
Zhang Z, Xie Q, Che L. 2020. Synergistic effects of ultrasound and extraction solvent on the bioactive compound in kenaf seed oil. J. Food Sci. Technol. 57, 2118-2128. https://doi.org/10.1007/s13197-020-04247-2 PMid:32431338 PMCid:PMC7230102
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.