¿Cómo afecta el tiempo de cosecha a los principales ácidos grasos y compuestos bioactivos de los cultivares de avellana (Corylus avellana L.)?
DOI:
https://doi.org/10.3989/gya.0971231.2024Palabras clave:
Antioxidante, Corylus avellana, Ácidos grasos, Ácido oleico, Fenólicos, ProteínasResumen
Este estudio se realizó principalmente para investigar los efectos del tiempo de cosecha sobre las proteínas, el aceite, los ácidos grasos y los compuestos bioactivos de cultivares de avellana (Corylus avellana L. cvs. ‘Tombul’, ‘Palaz’, ‘Çakıldak’, ‘OK 28’ y ‘Allahverdi’). La cosecha se realizó en 7 periodos diferentes con intervalos semanales del 20 de julio al 31 de agosto. A medida que avanzó la época de cosecha se detectaron aumentos y disminuciones en proteínas, aceite, ácidos grasos y compuestos bioactivos. El mayor contenido de aceite se encontró en los períodos de cosecha H5 y H6. El contenido más alto para el ácido oleico se encontró en H3. Los mayores fenólicos totales, flavonoides totales y actividad antioxidante se obtuvieron en los primeros 3 períodos de cosecha en comparación con los otros períodos. Los hallazgos actuales revelaron que las proteínas, los ácidos grasos y los compuestos bioactivos de los cultivares de avellana pueden diferir según el momento de la cosecha. Los resultados obtenidos proporcionarán ideas más claras tanto a la industria como a los productores sobre el momento óptimo de cosecha para el uso previsto de estos cultivares.
Descargas
Citas
Balık HI. 2021. Bioactive Compounds and Fatty Acid Composition of New Turkish Hazelnut Cultivars. Int. J. Fruit Sci. 21, 106-114. https://doi.org/10.1080/15538362.2020.1860182
Balta MF, Yarılgaç T, Aşkın MA, Kuçuk M, Balta F, Özrenk K. 2006. Determination of fatty acid compositions, oil contents and some quality traits of hazelnut genetic resources grown in eastern Anatolia of Turkey. J. Food Compos. Anal. 19, 681-686. https://doi.org/10.1016/j.jfca.2005.10.007
Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M. 2009. Saline water irrigation effects on fruit development, quality, and phenolic composition of virgin olive oils, cv. Chemlali. J. Agric. Food Chem. 57, 2803-2811. https://doi.org/10.1021/jf8034379 PMid:19334757
Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292 PMid:8660627
Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199-1200. https://doi.org/10.1038/1811199a0
Bouali I, Trabelsi H, Abdallah IB, Albouchi A, Martine L, Grégoire S, Bouzaien G, Gandour M, Boukhchina S, Berdeaux O. 2013. Changes in fatty acid, tocopherol and xanthophyll contents during the development of Tunisian-grown pecan nuts. J. Am. Oil Chem. Soc. 90, 1869-1876. https://doi.org/10.1007/s11746-013-2340-y
Chang SK, Alasalvar C, Bolling BW, Shahidi F. 2016. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits-A comprehensive review. J. Func. Food. 26, 88-122. https://doi.org/10.1016/j.jff.2016.06.029
Ciemniewska-Żytkiewicz H, Pasini F, Verardo V, Bryś J, Koczoń P, Caboni MF. 2015. Changes of the lipid fraction during fruit development in hazelnuts (Corylus avellana L.) grown in Poland. Eur. J. Lipid Sci. Technol. 117, 710-717. https://doi.org/10.1002/ejlt.201400345
Cristofori V, Bertazza G, Bignami C. 2015. Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars. Fruits. 70, 311-322. https://doi.org/10.1051/fruits/2015025
Delgado T, Malheiro R, Pereira JA, Ramalhosa E. 2010. Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Ind Crops and Prod. 32, 621-626. https://doi.org/10.1016/j.indcrop.2010.07.019
Firestone D. 1997. American oil chemists' society. Official methos and recommended practices. AOCS Press. Illinois.
Haminiuk CW, Maciel GM, Plata-Oviedo MS, Peralta RM. 2012. Phenolic compounds in fruits-an overview. Int. J. Food Sci. Technol. 47, 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x
Ilyasoglu H. 2015. Changes in sterol composition of hazelnut during fruit development. Int. J. Food Prop. 18, 456-463. https://doi.org/10.1080/10942912.2013.837065
Ilyasoğlu H. 2016. Changes in fatty acid composition of hazelnut during fruit development. J. Food. 41, 137-140. https://doi.org/10.15237/gida.GD16017
Karakaya O, Yaman İ, Kırkaya H, Uzun S, Kaya T, Balta MF. 2023. Effect of cluster drop intensity on nut traits, biochemical properties, and fatty acids composition in the 'Çakıldak' hazelnut cultivar. Erwerbs-Obstbau. 65, 785-793. https://doi.org/10.1007/s10341-022-00774-8
Karaosmanoglu H, Ustun NS. 2021. Fatty acids, tocopherol and phenolic contents of organic and conventional grown hazelnuts. J. Agric. Sci. Technol. 23, 167-177.
Karaosmanoglu H, Ustun NS. 2022. Proximate, mineral composition, color properties of organic and conventional grown hazelnuts (Corylus avellana L.). Erwerbs-Obstbau. 64, 261-270. https://doi.org/10.1007/s10341-021-00634-x
Kelebek H, Sonmezdag AS, Guclu G, Cengiz N, Uzlasir T, Kadiroglu P, Selli S. 2020. Comparison of phenolic profile and some physicochemical properties of Uzun pistachios as influenced by different harvest period. J. Food Process. Preserv. 44, e14605. https://doi.org/10.1111/jfpp.14605
Parr AJ, Bolwell GP. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80, 985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.3.CO;2-Z
Persic M, Mikulic-Petkovsek M, Slatnar A, Solar A, Veberic R. 2018. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem. 252, 349-355. https://doi.org/10.1016/j.foodchem.2018.01.124 PMid:29478553
Piscopo A, Romeo FV, Petrovicova B, Poiana M. 2010. Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) DA Webb). Sci. Hortic. 125, 41-46. https://doi.org/10.1016/j.scienta.2010.02.015
Pycia K, Kapusta I, Jaworska G. 2019. Impact of the degree of maturity of walnuts (Juglans regia L.) and their variety on the antioxidant potential and the content of tocopherols and polyphenols. Molecules. 24, 2936. https://doi.org/10.3390/molecules24162936 PMid:31412665 PMCid:PMC6718977
Pycia K, Kapusta I, Jaworska G. 2020. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel seed (Corylus avellana L.) depending on variety and harvest date. Molecules. 25, 43. https://doi.org/10.3390/molecules25010043 PMid:31877675 PMCid:PMC6983069
Salas JJ, Sánchez J, Ramli US, Manaf AM, Williams M, Harwood JL. 2000. Biochemistry of lipid metabolism in olive and other oil fruits. Prog. Lipid Res. 39, 151-180. https://doi.org/10.1016/S0163-7827(00)00003-5 PMid:10775763
Seyhan F, Ozay G, Saklar S, Ertaş E, Satır G, Alasalvar C. 2007. Chemical changes of three native Turkish hazelnut varieties (Corylus avellana L.) during fruit development. Food Chem. 105, 590-596. https://doi.org/10.1016/j.foodchem.2007.04.016
Silvestri C, Bacchetta L, Bellincontro A, Cristofori V. 2021. Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview. J. Sci. Food Agric. 101, 27-43. https://doi.org/10.1002/jsfa.10557 PMid:32488859
Venkatachalam M, Sathe SK. 2006. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 54, 4705-4714. https://doi.org/10.1021/jf0606959 https://doi.org/10.1021/jf0606959 PMid:16787018
Wani IA, Ayoub A, Bhat NA, Dar AH, Gull A. 2020. Hazelnut. In Antioxidants in Vegetables and Nuts-Properties and Health Benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_29 PMCid:PMC7319924
Wei F, Li Y, Sun D, Chen Q, Fu M, Zhao H, Chen X, Huang Y, Xu H. 2022. Odor, tastes, nutritional compounds and antioxidant activity of fresh-eating walnut during ripening. Sci. Hortic. 293, 110744. https://doi.org/10.1016/j.scienta.2021.110744
Wei L, Zhai Q. 2010. The dynamics and correlation between nitrogen, phosphorus, potassium and calcium in a hazelnut fruit during its development. Front. Agric. China. 4 (3), 352-357. https://doi.org/10.1007/s11703-010-1010-1
Yang J, Gadi R, Thomson T. 2011. Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica, 41, 167-176.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.