¿Cómo afecta el tiempo de cosecha a los principales ácidos grasos y compuestos bioactivos de los cultivares de avellana (Corylus avellana L.)?

Autores/as

DOI:

https://doi.org/10.3989/gya.0971231.2024

Palabras clave:

Antioxidante, Corylus avellana, Ácidos grasos, Ácido oleico, Fenólicos, Proteínas

Resumen


Este estudio se realizó principalmente para investigar los efectos del tiempo de cosecha sobre las proteínas, el aceite, los ácidos grasos y los compuestos bioactivos de cultivares de avellana (Corylus avellana L. cvs. ‘Tombul’, ‘Palaz’, ‘Çakıldak’, ‘OK 28’ y ‘Allahverdi’). La cosecha se realizó en 7 periodos diferentes con intervalos semanales del 20 de julio al 31 de agosto. A medida que avanzó la época de cosecha se detectaron aumentos y disminuciones en proteínas, aceite, ácidos grasos y compuestos bioactivos. El mayor contenido de aceite se encontró en los períodos de cosecha H5 y H6. El contenido más alto para el ácido oleico se encontró en H3. Los mayores fenólicos totales, flavonoides totales y actividad antioxidante se obtuvieron en los primeros 3 períodos de cosecha en comparación con los otros períodos. Los hallazgos actuales revelaron que las proteínas, los ácidos grasos y los compuestos bioactivos de los cultivares de avellana pueden diferir según el momento de la cosecha. Los resultados obtenidos proporcionarán ideas más claras tanto a la industria como a los productores sobre el momento óptimo de cosecha para el uso previsto de estos cultivares.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Balık HI. 2021. Bioactive Compounds and Fatty Acid Composition of New Turkish Hazelnut Cultivars. Int. J. Fruit Sci. 21, 106-114. https://doi.org/10.1080/15538362.2020.1860182

Balta MF, Yarılgaç T, Aşkın MA, Kuçuk M, Balta F, Özrenk K. 2006. Determination of fatty acid compositions, oil contents and some quality traits of hazelnut genetic resources grown in eastern Anatolia of Turkey. J. Food Compos. Anal. 19, 681-686. https://doi.org/10.1016/j.jfca.2005.10.007

Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M. 2009. Saline water irrigation effects on fruit development, quality, and phenolic composition of virgin olive oils, cv. Chemlali. J. Agric. Food Chem. 57, 2803-2811. https://doi.org/10.1021/jf8034379 PMid:19334757

Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292 PMid:8660627

Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199-1200. https://doi.org/10.1038/1811199a0

Bouali I, Trabelsi H, Abdallah IB, Albouchi A, Martine L, Grégoire S, Bouzaien G, Gandour M, Boukhchina S, Berdeaux O. 2013. Changes in fatty acid, tocopherol and xanthophyll contents during the development of Tunisian-grown pecan nuts. J. Am. Oil Chem. Soc. 90, 1869-1876. https://doi.org/10.1007/s11746-013-2340-y

Chang SK, Alasalvar C, Bolling BW, Shahidi F. 2016. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits-A comprehensive review. J. Func. Food. 26, 88-122. https://doi.org/10.1016/j.jff.2016.06.029

Ciemniewska-Żytkiewicz H, Pasini F, Verardo V, Bryś J, Koczoń P, Caboni MF. 2015. Changes of the lipid fraction during fruit development in hazelnuts (Corylus avellana L.) grown in Poland. Eur. J. Lipid Sci. Technol. 117, 710-717. https://doi.org/10.1002/ejlt.201400345

Cristofori V, Bertazza G, Bignami C. 2015. Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars. Fruits. 70, 311-322. https://doi.org/10.1051/fruits/2015025

Delgado T, Malheiro R, Pereira JA, Ramalhosa E. 2010. Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Ind Crops and Prod. 32, 621-626. https://doi.org/10.1016/j.indcrop.2010.07.019

Firestone D. 1997. American oil chemists' society. Official methos and recommended practices. AOCS Press. Illinois.

Haminiuk CW, Maciel GM, Plata-Oviedo MS, Peralta RM. 2012. Phenolic compounds in fruits-an overview. Int. J. Food Sci. Technol. 47, 2023-2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x

Ilyasoglu H. 2015. Changes in sterol composition of hazelnut during fruit development. Int. J. Food Prop. 18, 456-463. https://doi.org/10.1080/10942912.2013.837065

Ilyasoğlu H. 2016. Changes in fatty acid composition of hazelnut during fruit development. J. Food. 41, 137-140. https://doi.org/10.15237/gida.GD16017

Karakaya O, Yaman İ, Kırkaya H, Uzun S, Kaya T, Balta MF. 2023. Effect of cluster drop intensity on nut traits, biochemical properties, and fatty acids composition in the 'Çakıldak' hazelnut cultivar. Erwerbs-Obstbau. 65, 785-793. https://doi.org/10.1007/s10341-022-00774-8

Karaosmanoglu H, Ustun NS. 2021. Fatty acids, tocopherol and phenolic contents of organic and conventional grown hazelnuts. J. Agric. Sci. Technol. 23, 167-177.

Karaosmanoglu H, Ustun NS. 2022. Proximate, mineral composition, color properties of organic and conventional grown hazelnuts (Corylus avellana L.). Erwerbs-Obstbau. 64, 261-270. https://doi.org/10.1007/s10341-021-00634-x

Kelebek H, Sonmezdag AS, Guclu G, Cengiz N, Uzlasir T, Kadiroglu P, Selli S. 2020. Comparison of phenolic profile and some physicochemical properties of Uzun pistachios as influenced by different harvest period. J. Food Process. Preserv. 44, e14605. https://doi.org/10.1111/jfpp.14605

Parr AJ, Bolwell GP. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80, 985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.3.CO;2-Z

Persic M, Mikulic-Petkovsek M, Slatnar A, Solar A, Veberic R. 2018. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem. 252, 349-355. https://doi.org/10.1016/j.foodchem.2018.01.124 PMid:29478553

Piscopo A, Romeo FV, Petrovicova B, Poiana M. 2010. Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) DA Webb). Sci. Hortic. 125, 41-46. https://doi.org/10.1016/j.scienta.2010.02.015

Pycia K, Kapusta I, Jaworska G. 2019. Impact of the degree of maturity of walnuts (Juglans regia L.) and their variety on the antioxidant potential and the content of tocopherols and polyphenols. Molecules. 24, 2936. https://doi.org/10.3390/molecules24162936 PMid:31412665 PMCid:PMC6718977

Pycia K, Kapusta I, Jaworska G. 2020. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel seed (Corylus avellana L.) depending on variety and harvest date. Molecules. 25, 43. https://doi.org/10.3390/molecules25010043 PMid:31877675 PMCid:PMC6983069

Salas JJ, Sánchez J, Ramli US, Manaf AM, Williams M, Harwood JL. 2000. Biochemistry of lipid metabolism in olive and other oil fruits. Prog. Lipid Res. 39, 151-180. https://doi.org/10.1016/S0163-7827(00)00003-5 PMid:10775763

Seyhan F, Ozay G, Saklar S, Ertaş E, Satır G, Alasalvar C. 2007. Chemical changes of three native Turkish hazelnut varieties (Corylus avellana L.) during fruit development. Food Chem. 105, 590-596. https://doi.org/10.1016/j.foodchem.2007.04.016

Silvestri C, Bacchetta L, Bellincontro A, Cristofori V. 2021. Advances in cultivar choice, hazelnut orchard management, and nut storage to enhance product quality and safety: an overview. J. Sci. Food Agric. 101, 27-43. https://doi.org/10.1002/jsfa.10557 PMid:32488859

Venkatachalam M, Sathe SK. 2006. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 54, 4705-4714. https://doi.org/10.1021/jf0606959 https://doi.org/10.1021/jf0606959 PMid:16787018

Wani IA, Ayoub A, Bhat NA, Dar AH, Gull A. 2020. Hazelnut. In Antioxidants in Vegetables and Nuts-Properties and Health Benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_29 PMCid:PMC7319924

Wei F, Li Y, Sun D, Chen Q, Fu M, Zhao H, Chen X, Huang Y, Xu H. 2022. Odor, tastes, nutritional compounds and antioxidant activity of fresh-eating walnut during ripening. Sci. Hortic. 293, 110744. https://doi.org/10.1016/j.scienta.2021.110744

Wei L, Zhai Q. 2010. The dynamics and correlation between nitrogen, phosphorus, potassium and calcium in a hazelnut fruit during its development. Front. Agric. China. 4 (3), 352-357. https://doi.org/10.1007/s11703-010-1010-1

Yang J, Gadi R, Thomson T. 2011. Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica, 41, 167-176.

Publicado

2024-03-14

Cómo citar

1.
Balık H İrfan, Kayalak Balık S, Karakaya O, Ozturk B. ¿Cómo afecta el tiempo de cosecha a los principales ácidos grasos y compuestos bioactivos de los cultivares de avellana (Corylus avellana L.)?. Grasas aceites [Internet]. 14 de marzo de 2024 [citado 16 de mayo de 2024];75(1):2024. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2024

Número

Sección

Investigación