Efecto del tiempo de cosecha sobre los compuestos volátiles y las propiedades bioactivas de flores, hojas y tallos de Echinacea Pallida y su utilización para mejorar la estabilidad oxidativa de aceites vegetales

Autores/as

DOI:

https://doi.org/10.3989/gya.0105221

Palabras clave:

Compuestos volátiles, Equinacea pallida, Propiedades bioactivas, Rancimat, Tiempo de cosecha

Resumen


El presente estudio se realizó para determinar el efecto del tiempo de cosecha sobre las propiedades bioactivas de Echinacea pallida y el efecto antioxidante de su extracto en aceites vegetales. E. pallida se cosechó en junio de 2009, junio de 2010 y agosto de 2010. Los análisis de contenido fenólico total y actividad antioxidante de los extractos de plantas obtenidos con tres solventes diferentes se realizaron utilizando métodos espectrofotométricos. Se determinó que el tiempo de cosecha y el tipo de solvente tenían efectos significativos sobre las propiedades bioactivas. Además, se determinó el efecto del extracto de E. pallida sobre la estabilidad oxidativa de aceites vegetales mediante el método rancimat. El extracto (2000 ppm) obtenido con etanol (%100) mostró una estabilidad oxidativa similar en los aceites de girasol y canola en comparación con BHA (100 ppm). Los resultados de GC-MS mostraron la presencia de compuestos volátiles específicos, como el acetato de bornilo, cariofileno E, ambreta de almizcle, germacreno D, α-muurolol, ambreta de almizcle, imidazo (1,2-a) pirimidina, 1-pirrolidino-1-ciclohexeno, 2,3,5,6-tetrahidro-1H-pirrolizina, pirazina y bencenaminio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aeluri R, Alla M, Polepalli S, Jain N. 2015. Synthesis and antiproliferative activity of imidazo[1,2-a] pyrimidine Mannich bases. Eur. J. Med. Chem. 100, 18-23. https://doi.org/10.1016/j.ejmech.2015.05.037 PMid:26067381

Aucoin M, Cooley K, Saunders PR, Carè J, Anheyer D, Medina DN, Cardozo V, Remy D, Hannan N, Garber A. 2020. The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv. Integr. Med. 7, 203-217. https://doi.org/10.1016/j.aimed.2020.07.004 PMid:32837894 PMCid:PMC7395221

Binns SE, Livesey JF, Arnason JT, Baum BR. 2002. Phytochemical Variation in Echinacea from Roots and Flowerheads of Wild and Cultivated Populations. J. Agric. Food Chem. 50, 3673-3687. https://doi.org/10.1021/jf011439t PMid:12059142

Chen CL, Zhang SC, Sung JM. 2008. Biomass and caffeoyl phenols production of E. purpurea grown in Taiwan. Exp. Agric. 44, 497-507. https://doi.org/10.1017/S0014479708006753

Chicca A, Adinolfi B, Martinotti E, Fogli S, Breschi MC, Pellati F. 2007. Cytotoxic effects of Echinacea root hexanic extracts on human cancer cell lines. J. Ethnopharmacol. 110, 148-153. https://doi.org/10.1016/j.jep.2006.09.013 PMid:17052874

Do QD, Angkawijaya, AE, Tran-Nguyen PL, Huynh, LH, Soetaredjo, FE, Ismadji S, Ju YH. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22, 296-302. https://doi.org/10.1016/j.jfda.2013.11.001 PMid:28911418 PMCid:PMC9354875

Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, Kayır O. 2015. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of Echinacea Purpurea (L.) Moench and Echinacea Pallida (Nutt.) Nutt. J. Food Biochem. 39, 622-630. https://doi.org/10.1111/jfbc.12168

Erenler R, Demirtas I, Karan T, Gul F, Kayir O, Karakoc OC. 2018. Chemical constituents, quantitative analysis and insecticidal activities of plant extract and essential oil from Origanum onites L. TPR. 2 91-96.

Gecer EN, Erenler R, Temiz C, Genc N, Yildiz I. 2022. Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Part. Sci. Technol. 40 (1), 50-57. https://doi.org/10.1080/02726351.2021.1904309

Goodacre SC, Street LJ, Hallett DJ, Crawforth JM, Kelly S, Owens AP, Blackaby WP, Lewis RT, Stanley J, Smith AJ, Ferris P, Sohal B, Cook SM, Pike A, Brown N, Wafford KA, Marshall G, Castro JL, Atack JR. 2006. Imidazo[1,2-a] pyrimidines as Functionally Selective and Orally Bioavailable GABAAα2/α3 Binding Site Agonists for the Treatment of Anxiety Disorders. J. Med. Chem. 49 (1) 35-38. https://doi.org/10.1021/jm051065l PMid:16392789

Ivan BC, Barbuceanu SF, Hotnog CM, Anghel AI, Ancuceanu RV, Mihaila MA, Brasoveanu LI, Shova S, Draghici C, Olaru OT, Nitulescu GM, Dinu M, Dumitrascu F. 2022. New Pyrrole Derivatives as Promising Biological Agents: Design, Synthesis, Characterization, In Silico, and Cytotoxicity Evaluation. Int. J. Mol. Sci. 23, 8854. https://doi.org/10.3390/ijms23168854 PMid:36012121 PMCid:PMC9408590

Karan T, Yildiz I, Aydin A, Erenler E. 2018. Inhibition of various cancer cells proliferation of bornyl acetate and essential oil from Inula graveolens (Linnaeus) Desf. Rec. Nat. Prod. 12 (3), 273-283. https://doi.org/10.25135/rnp.30.17.09.057

Lee JI, Choi JH, Kwon TW, Jo HS, Kim DG, Ko SG, Song GJ, Cho IH. 2023. Neuroprotective effects of bornyl acetate on experimental autoimmune encephalomyelitis via anti-inflammatory effects and maintaining blood-brain-barrier integrity. Phytomedicine. 112, 154569. https://doi.org/10.1016/j.phymed.2022.154569 PMid:36842217

Lepojević I, Lepojević Ž, Pavlić B, Ristić M, Zeković Z, Vidović S. 2017. Solid-liquid and high-pressure (liquid and supercritical carbondioxide) extraction of Echinacea purpurea L. J. Supercrit. Fluids 119, 159-168. https://doi.org/10.1016/j.supflu.2016.09.002

Lin SD, Sung JM, Chen CL. 2011. Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea Purpurea grown in Taiwan. Food Chem. 125, 226-231. https://doi.org/10.1016/j.foodchem.2010.09.006

Mazza G, Cotrell T. 1999. Volatile components of roots, stems, leaves and flowers of Echinacea species. J. Agric. Food Chem. 47, 3081-3085. https://doi.org/10.1021/jf981117y PMid:10552612

Mirjalili MH, Salehi P, Badi HN, Sonboli A. 2006. Volatile constituents of the flowerheads of three Echinacea species cultivated in Iran. Flavour Frag. 21, 355-358. https://doi.org/10.1002/ffj.1657

Mistríková I, Vaverková Š. 2009. Patterns of variation in lipophilic and hydrophilic constituents in flower developmental stages of Echinacea purpurea (L.) Moench cultivated in Slovakia. Plant Soil Environ. 55 (2), 70-73. https://doi.org/10.17221/261-PSE

Najafi Z, Zahran HA, Yeşilçubuk NŞ, Gürbüz H. (2022). Effect of different extraction methods on saffron antioxidant activity, total phenolic and crocin contents and the protective effect of saffron extract on the oxidative stability of common vegetable oils. Grasas Aceites 73 (4), 480-480. https://doi.org/10.3989/gya.0783211

Pellati F, Benvenuti S, Magro L, Melegari M, Soragni F. 2004. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharmaceut. Biomed. 35, 289-301. https://doi.org/10.1016/S0731-7085(03)00645-9 PMid:15063463

Pirbalouti AG, Mahdad E, Craker L. 2013. Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 141, 2440-2449. https://doi.org/10.1016/j.foodchem.2013.05.098 PMid:23870979

Stanisavljević I, Stojičević S, Veličković D, Veljković V, Lazić M. 2009. Antioxidant and Antimicrobial Activities of Echinacea (Echinacea purpurea L.) Extracts Obtained by Classical and Ultrasound Extraction. Chin. J. Chem. Eng. 17 (3), 478-483. https://doi.org/10.1016/S1004-9541(08)60234-7

Thappa RK, Bakshi SK, Dhar PL, Agarwal SG, Kitchlu S, Kaul MK, Suri KA. 2004. Significance of changed climatic factors on essential oil composition of Echinacea purpurea under subtropical conditions. Flavour Fragr. 19, 452-454. https://doi.org/10.1002/ffj.1352

Tsai YL, Chiou SY, Chan KC, Sung JM, Lin SD. 2012. Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT- Food Sci. Technol. 46, 169-176. https://doi.org/10.1016/j.lwt.2011.09.026

Tulukcu E, Sagdic O, Albayrak S, Ekici L, Yetim H. 2009. Effect of collection time on biological activity of clary sage (Salvia sclarea). J. Appl. Bot. Food Qual. 83, 44-49.

Yalcin H, Kavuncuoglu H, Ekici L, Sagdic, O. 2017, Determination of Fatty Acid Composition, Volatile Components, Physico-Chemical and Bioactive Properties of Grape (Vitis vinifera) Seed and Seed Oil. J. Food Process Preserv. 41, e12854. https://doi.org/10.1111/jfpp.12854

Yaglioglu AS, Akdulum B, Erenler R, Demirtas I, Telci I, Tekin S. 2013. Antiproliferative activity of pentadeca-(8E, 13Z) dien-11-yn-2-one and (E)-1,8-pentadecadiene from Echinacea pallida (Nutt.) Nutt. Roots. Med Chem Res 22, 2946-2953. https://doi.org/10.1007/s00044-012-0297-2

Zulkafli ZD, Wang H, Miyashita F, Utsumi N, Tamura K. 2014. Cosolvent-modified supercritical carbon dioxide extraction of phenolic compounds from bamboo leaves (Sasa palmata). J. Supercrit. Fluids 94, 123-129. https://doi.org/10.1016/j.supflu.2014.07.008

Publicado

2023-12-30

Cómo citar

1.
Kocacik A, Yalcin H. Efecto del tiempo de cosecha sobre los compuestos volátiles y las propiedades bioactivas de flores, hojas y tallos de Echinacea Pallida y su utilización para mejorar la estabilidad oxidativa de aceites vegetales. Grasas aceites [Internet]. 30 de diciembre de 2023 [citado 2 de mayo de 2025];74(4):e526. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2115

Número

Sección

Investigación

Datos de los fondos

Erciyes Üniversitesi
Números de la subvención FBY-11-3477