Evaluación de la cinética de formación de peróxido y hexanal en aceite de girasol con palmitato de ascorbilo incorporado durante oxidación acelerada

Autores/as

DOI:

https://doi.org/10.3989/gya.0320231

Palabras clave:

Energía de activación, Estabilidad oxidativa, Hexanal, Índice de peróxidos, Palmitato de ascorbilo, Parámetros cinéticos

Resumen


Se ha determinado los efectos de la temperatura (40-80°C), el tiempo (0-28 días) y diferentes concentraciones (0-1000 mg/kg) de palmitato de ascorbilo (AP) sobre el índice de peróxidos, dienos conjugados, ácidos trieno y hexanal, en aceites de girasol sometidos a condiciones de oxidación acelerada. Las muestras con AP agregado mostraron valores de peróxido y contenidos de hexanal más bajos que sus correspondientes sin AP, mientras que al aumentar la temperatura los órdenes de reacción para la formación de peróxido se redujeron del primer orden a orden cero. Se encontró que la formación de hexanal era de primer orden para las diferentes condiciones experimentales. AP redujo la constante de velocidad de reacción para la formación de peróxido y hexanal. La energía de activación requerida para la formación de peróxidos y hexanal osciló entre 14,64-89,40 y 1,62-12,14 kJ/molK, respectivamente. Se encontró que la concentración de AP de 400 mg/kg, que proporciona las energías de activación más altas para la formación de peróxido y hexanal, era la mejor concentración para mejorar la estabilidad oxidativa del aceite de girasol en las condiciones definidas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOCS 1998. Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Chemists' Society Press, Champaign, Method no. Cd 8-53.

AOCS 2003. Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Chemists' Society Press, Champaign, Method no. Cd 5-91.

Bakkalbaşı E, Yılmaz ÖM, Javidipour I, Artık N. 2012. Effects of packaging materials, storage conditions and variety on oxidative stability of shelled walnuts. LWT-Food Sci. Technol. 46, 203-209. https://doi.org/10.1016/j.lwt.2011.10.006

Bakkalbaşı E. 2019. Oxidative stability of enriched walnut oil with phenolic extracts from walnut press-cake under accelerated oxidation conditions and the effect of ultrasound treatment. J. Food Meas. Charact. 13, 43-50. https://doi.org/10.1007/s11694-018-9917-y

Bartee SD, Kim HJ, Min DB. 2007. Effects of antioxidants on the oxidative stability of oils containing arachidonic, docosapentaenoic and docosahexaenoic acids. J. Am. Oil Chem. Soc. 84, 363-368. https://doi.org/10.1007/s11746-007-1046-4

Baştürk A, Javidipour I, Boyacı IH. 2007. Oxidative stability of natural and chemically interesterified cottonseed, palm and soybean oils. J. Food Lipids. 14, 170-188. https://doi.org/10.1111/j.1745-4522.2007.00078.x

Baştürk A, Boran G, Javidipour I. 2017. Effects of ascorbyl palmitate and metal ions on oxidation of sunflower oil under accelerated oxidation conditions. J. Anim. Plant Sci. 27, 2014-2024.

Baştürk A, Ceylan MM, Çavuş M, Boran G, Javidipour I. 2018. Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. LWT-Food Sci. Technol. 89, 358-364. https://doi.org/10.1016/j.lwt.2017.11.005

Coppen, P. (1994). The use of antioxidants. in J. C. Allen, R.J. Hamilton (Eds), Rancidity in foods, (3rd Ed). Blackie Academic Press, London, pp 84-103.

Crapiste GH, Brevedan MIV, Carelli AA. 1999. Oxidation of sunflower oil during storage. J. Am. Oil Chem. Soc. 76, 1437-1443. https://doi.org/10.1007/s11746-999-0181-5

Günal D, Turan S. 2017. Effects of olive wastewater and pomace extracts, lecithin, and ascorbyl palmitate on the oxidative stability of refined sunflower oil. J. Food Process. Preserv. 42, 1-12. https://doi.org/10.1111/jfpp.13705

Iso H, Sato S, Umemura U, Kudo, M, Koike K, Kitamura A, Imano H, Okamura T, Naito Y Shimamoto T. 2002. Linoleic Acid, Other Fatty Acids, and the Risk of Stroke. Stroke. 33, 2086-2093. https://doi.org/10.1161/01.STR.0000023890.25066.50 PMid:12154268

Ixtaina VY, Nolasco SM, Tomás MC. 2012. Oxidative Stability of Chia (Salvia hispanica L.) Seed Oil: Effect of Antioxidants and Storage Conditions. J. Am. Oil Chem. Soc. 89, 1077-1090. https://doi.org/10.1007/s11746-011-1990-x

Javidipour I, Qian M.C. 2008. Volatile component change in whey protein concentrate during storage investigated by headspace solid-phase microextraction gas chromatography. Dairy Sci. Technol. 88, 95-104. https://doi.org/10.1051/dst:2007010

Javidipour I, Tüfenk R, Baştürk A. 2015. Effect of ascorbyl palmitate on oxidative stability of chemically interesterified cottonseed and olive oils. J. Food Sci. Technol. 52, 876-884. https://doi.org/10.1007/s13197-013-1086-8 PMid:25694696 PMCid:PMC4325068

Kamal-eldin A, Yanıshlieva N. 2005. Kinetic analysis of lipidoxidation data. In: Analysis of Lipid Oxidation, Champaign, IL, U.S.A. pp. 234-263. https://doi.org/10.1201/9781439822395.ch10

Kim TS, Decker EA, Lee J. 2012. Antioxidant capacities of a-tocopherol, trolox, ascorbic acid, and ascorbyl palmitate in riboflavin photosensitized oil-in-water emulsions. Food Chem. 133, 68-75. https://doi.org/10.1016/j.foodchem.2011.12.069

Lee KH, Jung MY, Kim SY. 1997 Quenching mechanisms and kinetics of ascorbyl palmitate for the reduction of the photo-sensitized oxidation of oils. J. Am. Oil Chem. Soc. 74, 1053-1057. https://doi.org/10.1007/s11746-997-0024-1

Martínez ML, Penci MC, Ixtaina V, Ribotto PD, Maestri D. 2013. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT-Food Sci. Technol. 51, 44-50. https://doi.org/10.1016/j.lwt.2012.10.021

Ozdemir H, Bakkalbaşı E, Javidipour I. 2021. Effect of seed roasting on oxidative stability and antioxidant content of hemp seed oil. J. Food Sci. Technol. 58, 2606-2616. https://doi.org/10.1007/s13197-020-04767-x PMid:34194096 PMCid:PMC8196152

Ozilgen S, Ozilgen M. 1990. Kinetic model of lipid Oxidation in foods. J. Food Sci. 55, 498-498. https://doi.org/10.1111/j.1365-2621.1990.tb06795.x

Perricone N, Nagy K, Horváth F, Dajkó G, Uray I, Nagy IZ. 1999. Alpha lipoic acid (ALA) protects proteins against the hydroxyl free radical-induced alterations: rationale for its geriatric topical application. Arch. Gerontol. Geriatr. 29, 45-56. https://doi.org/10.1016/S0167-4943(99)00022-9 PMid:15374076

Shahidi F, Wanasundara UN. 2002. Methods for measuring oxidatie rancidity in fats and oils, in Akoh CC, Min DB, (Ed.), Food Lipids: Chemistry, Nutrition and Biotechnology. 2nd ed. Marcel Dekker Inc., New York, U.S.A. pp. 465-487. https://doi.org/10.1201/9780203908815.ch14

van Ruth SM, Roozen JP, Posthumus MA, Jansen FJHM. 1999. Influence of ascorbic acid and ascorbyl palmitate on the aroma composition of an oxidized vegetable oil and its emulsion. J. Am. Oil Chem. Soc. 76, 1375-1381. https://doi.org/10.1007/s11746-999-0153-9

Yanishlieva NV, Marinova EM. 2001. Stabilisation of edible oils with natural antioxidants. Eur J. Lipid Sci. Technol. 103, 752-767. https://doi.org/10.1002/1438-9312(200111)103:11<752::AID-EJLT752>3.3.CO;2-S

Špiclin P, Gašperlin M, Kmetec V. 2001. Stability of ascorbyl palmitate in topical microemulsions. Int. J. Pharm. 222, 271-279. https://doi.org/10.1016/S0378-5173(01)00715-3 PMid:11427357

Publicado

2024-03-25

Cómo citar

1.
Kavran P, Yücel T, Bakkalbaşı E, Güleç H, Cavidoğlu İ. Evaluación de la cinética de formación de peróxido y hexanal en aceite de girasol con palmitato de ascorbilo incorporado durante oxidación acelerada. Grasas aceites [Internet]. 25 de marzo de 2024 [citado 16 de mayo de 2024];75(1):e536. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2161

Número

Sección

Investigación

Datos de los fondos

Yüzüncü Yil Üniversitesi
Números de la subvención 2014-FBE-YL002