Efectos antibacterianos sinérgicos del aceite esencial de Trachyspermum ammi L. en combinación con nitrito de sodio empleando modelos de alimentos inoculados artificialmente

Autores/as

DOI:

https://doi.org/10.3989/gya.0648231

Palabras clave:

Conservantes químicos, Aceite esencial, Patógenos transmitidos por los alimentos, Sinergismo, Trachyspermum ammi

Resumen


La adición de aceites esenciales carminativos puede tener una posible aplicación en la conservación de alimentos que podría minimizar o sustituir los conservantes químicos. En el presente estudio, los aceites esenciales (n=11): Anethum sowaCinnamomum zeylanicumCitrus bergamiaCymbopogon flexuosusCymbopogon martiniCymbopogon winterianusElettaria cardamomumMentha arvensisOcimum basilicumSalvia sclarea y Trachyspermum ammi se ensayaron frente a Aeromonas hydrophila y Listeria monocytogenes. El diámetro mayor de la zona de inhibición i.e 19,9 ± 0,33 mm y 21,7 ± 0,58 mm se mostraron para el aceite esencial de T. ammi frente a Aeromonas hydrophila y Listeria monocytogenes respectivamente. También se realizaron estudios de inhibición del crecimiento para el aceite esencial de T. ammi, con nitrito de sodio y sus combinaciones en modelos de caldo de pepino, manzana, sopa de harina de garbanzos y caldo de cordero. La combinación de aceite esencial de T. ammi y nitrito de sodio mostró sinergismo y también fue eficaz para reducir la proliferación de bacterias en sistemas alimentarios inoculados artificialmente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aćimović M, Kiprovski B, Rat M, Sikora V, Popović V, Koren A, Jokanović MB. 2018. Salvia sclarea: Chemical Composition and Biological Activity. J. Agron. Technol. Engine. Manag. 1, 18-28.

Adley CC, Ryan MP. 2016. The Nature and Extent of Foodborne Disease, in Jorge Barros-Velázquez, Antimicrobial Food Packaging (Eds.), Academic Press, pp.1-10. https://doi.org/10.1016/B978-0-12-800723-5.00001-2

Al-Maqtari QA, Rehman A, Mahdi AA, Al-Ansi W, Wei M,Yanyu Z, Phyo HM, Galeboe O, Yao W. 2021. Application of essential oils as preservatives in food systems: Challenges and future Prospectives - A Review. Phytochem. Rev. 21, 1209-1246. https://doi.org/10.1007/s11101-021-09776-y

Anwar F, Abbas A, Alkharfy KM, Gilani AH. 2016. Cardamom (Elettaria Cardamomum Maton) oils. Essential Oils Food Preser. Flavor Safet. 295-301. https://doi.org/10.1016/B978-0-12-416641-7.00033-X

Bakhtiary F, Sayevand HR, Khaneghah AM, Haslberger AG, Hosseini H. 2018. Antibacterial Efficacy of Essential Oils and Sodium Nitrite in Vacuum processed Beef Fillet. Appl. Food Biotechnol. 5, 1-10.

Barros JC, da Conceição ML, Neto NJG, da Costa ACV, de Souza EL. 2012. Combination of Origanum vulgare L. essential oil and lactic acid to inhibit Staphylococcus aureus in a meat broth and meat model. Brazilian J. Microbiol. 43, 1120-1127. https://doi.org/10.1590/S1517-83822012000300039 PMid:24031936 PMCid:PMC3768876

Callejón RM, Rodríguez-Naranjo MI, Ubeda C, Hornedo-Ortega R, Garcia-Parrilla MC, Troncoso AM. 2015. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Diseas. 12, 32-38. https://doi.org/10.1089/fpd.2014.1821 PMid:25587926

Catherine AA, Deepika H, Negi PS. 2012. Antibacterial activity of eugenol and peppermint oil in Model Food Systems. J. Essential Oil Resear. 24, 481-486. https://doi.org/10.1080/10412905.2012.703513

Chazelas E, Pierre F, Druesne-Pecollo N, Esseddik Y, Edelenyi FSD, Agaesse C, Sa AD, Lutchia R, Gigandet S, Srour B, Debras C, Huybrechts I, Julia C, Kesse-Guyot E, Alles B, Galan P, Hercberg S, Deschasaux-Tanguy M, Touvier M. 2022. Nitrites and nitrates from food additives and natural sources and cancer risk: Results from the NutriNet-Santé cohort. Internat. Epidemiol. 51, 1106-1119. https://doi.org/10.1093/ije/dyac046 PMid:35303088 PMCid:PMC9365633

Ganjewala D, Gupta AK. 2016. Lemongrass (Cymbopogon flexuosus Steud.) Wats Essential Oil: Overview and Biological Activities. RPMP 37, 233-274.

Gutiérrez J, Barry-Ryan C, Bourke P. 2009. Antimicrobial activity of plant essent ial oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 26,142-150. https://doi.org/10.1016/j.fm.2008.10.008 PMid:19171255

Joshi RK. 2014. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Ancient Sci. Life 33,149-156. https://doi.org/10.4103/0257-7941.144618 PMid:25538349 PMCid:PMC4264302

Karaca N, Şener G, Demirci B, Demirci F. 2020. "Synergistic antibacterial combinat ion of Lavandula latifolia medik. essential oil with camphor. Z Naturforsch CJ Biosci . 76, 169-173. https://doi.org/10.1515/znc-2020-0051 PMid:33128531

Lee H, Yoon Y. 2021. "Et iological agents implicated in Foodborne Illness Worldwide," Food Sci. Animal Resour. 41,1-7. https://doi.org/10.5851/kosfa.2020.e75 PMid:33506212 PMCid:PMC7810395

Malik T. 2017. Perspective uses of essent ial oils in functional foods and antimicrobial packaging material. in Examining the Development, Regulation, and Consumpt ion of Functional Foods (Ed.) Benjamin S. IGI 396 Global. pp: 230-270. https://doi.org/10.4018/978-1-5225-0607-2.ch010 PMid:28718237

Malik T, Rawat S. 2021. Biotechnological Interventions for Production of Flavour and Fragrance Compounds, in V. Venkatramanan, Shachi Shah, Ram Prasad, Sustainable Bioeconomy Pathways to Sustainable Development Goals (Eds.) Springer Nature Singapore Pte Ltd, pp.131-170. https://doi.org/10.1007/978-981-15-7321-7_7

Malik T, Singh P. 2015. Antimicrobial activity of aroma chemicals against uropathogens. J. Environmen. App. Bioresear. 3, 86-91. https://www.researchgate.net/publication/280096255_Antimicrobial_activity_of_aroma_chemicals_against_uropathogens.

Malik T, Singh P. 2010. Antimicrobial effects of essential oils against uropathogens with varying sensitivity to antibiotics. Asian J. Biol. Sci. 3, 92-98. https://doi.org/10.3923/ajbs.2010.92.98

Malik T, Singh P, Pant S, Chauhan N, Lohani H. 2011. Potentiation of antimicrobial activity of ciprofloxacin by Pelargonium graveolens essential oil against selected uropathogens. Phytother. Resear. 25, 1225-1228. https://doi.org/10.1002/ptr.3479 PMid:21618302

Malik T, Singh P, Pant S, Chauhan N, Lohani H, Kumar V, Swarup S.2015. Inhibition of swarming behaviour in Proteus mirabilis by Pelargonium graveolens essential oil. Bangladesh J. Medic. Sci. 14, 384-388. https://doi.org/10.3329/bjms.v14i4.20004

Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM. 2014. Trachyspermum ammi (L.) Sprague: Chemical Composition of Essential Oil and Antimicrobial Activities of Respective Fractions. J. Evidence-Based Complement. Alternat. Medic. 20, 50-56. https://doi.org/10.1177/2156587214553302 PMid:25305209

Navarra M, Mannucci C, Delbò M, Calapai G. 2015. Citrus bergamia essent ial oil: From basic research to clinical application. Frontiers Pharmacol. 6, 1-7. https://doi.org/10.3389/fphar.2015.00036 PMid:25784877 PMCid:PMC4345801

Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement. Alternat. Medic. 6, 1-8. https://doi.org/10.1186/1472-6882-6-39 PMid:17134518 PMCid:PMC1693916

Rao PV, Gan SH. 2014. Cinnamon: A multifaceted medicinal plant. Evidence-Based Complement.Alternat. Medic. 2014, 1-12. https://doi.org/10.1155/2014/642942 PMid:24817901 PMCid:PMC4003790

Rathore S, Mukhia S, Kumar R, Kumar R.2023. Essential oil composition and antimicrobial potential of aromatic plants grown in the mid-hill conditions of the western Himalayas. Scientific Report. 13, 1-13. https://doi.org/10.1038/s41598-023-31875-3 PMid:36966174 PMCid:PMC10039882

Saleh-e-In MM, Sultan N, Rahim MM, Ahsan MA, Bhuiyan HMN, Hossain MN, Rahman MR, Roy SK, Islam MR. 2017. Chemical composition and pharmacological significance of Anethum Sowa L. Root. BMC Complement. Alternat. Medic. 17, 1-17. https://doi.org/10.1186/s12906-017-1601-y PMid:28231789 PMCid:PMC5324201

Sambu S, Hemaram U, Murugan R , Alsofi AA. 2022. Toxicological and teratogenic effect of various food additives: An updated review. BioMedb Res. Internat. 2022, 1-11. https://doi.org/10.1155/2022/6829409 PMid:35782077 PMCid:PMC9249520

Thawkar BS, Jawarkar AG, Kalamkar PV, Pawar KP, Kale MK. 2016. Phytochemical and pharmacological Review of Mentha Arvensis. Internat. J. Green Pharm. 10, 71-76.

Vitali LA, Beghelli D, Nya PCB, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, Petrelli D. 2016. Diverse biological effects of the essential oil from Iranian Trachyspermum Ammi. Arabian J. Chem. 9, 775-786. https://doi.org/10.1016/j.arabjc.2015.06.002

Wickramanayake MVKS, Kumarage P, Majeed S, Heo GJ. 2022. An overview of the antimicrobial activity of some essent ial oils against fish 450 pathogenic bacteria. Veter. Integrat. Sci. 21, 99-119. https://doi.org/10.12982/VIS.2023.009

Witkowska AM, Hickey DK, Wilkinson MG. 2014. Effect of variation in food components and composition on the antimicrobial activity of oregano and clove essential oils in broth and in a reformulated reduced salt vegetable soup product. J. Food Reser. 3 (6), 92 https://doi.org/10.5539/jfr.v3n6p92

Publicado

2024-04-01

Cómo citar

1.
Malik T, Sarkar O, Pant S. Efectos antibacterianos sinérgicos del aceite esencial de Trachyspermum ammi L. en combinación con nitrito de sodio empleando modelos de alimentos inoculados artificialmente. Grasas aceites [Internet]. 1 de abril de 2024 [citado 16 de mayo de 2024];75(1):e544. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2162

Número

Sección

Investigación