Grasas y Aceites, Vol 69, No 3 (2018)

Lipophilic components and evaluation of the cytotoxic and antioxidant activities of Impatiens glandulifera Royle and Impatiens noli – tangere L. (Balsaminaceae)


https://doi.org/10.3989/gya.0234181

K. Szewczyk
Department of Pharmaceutical Botany, Medical University of Lublin, Poland
orcid http://orcid.org/0000-0003-4884-9110

R. Bonikowski
Łódź University of Technology, Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Poland
orcid http://orcid.org/0000-0003-3327-8984

A. Maciąg-Krajewska
Łódź University of Technology, Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Poland
orcid http://orcid.org/0000-0001-9892-1219

J. Abramek
Department of Biology and Genetics, Medical University of Lublin, Poland
orcid http://orcid.org/0000-0001-7925-4350

A. Bogucka-Kocka
Department of Biology and Genetics, Medical University of Lublin, Poland
orcid http://orcid.org/0000-0001-8473-7429

Abstract


The chemical composition of the lipophilic fractions of Impatiens glandulifera Royle and I. noli-tangere L. were analyzed by gas chromatography-mass spectrometry (GC-MS)., The study focused on the fatty acids, triterpenoids and sterols in the leaves, roots and seeds. Most of the identified compounds are new for these species. a-linolenic, oleic and palmitic acids were the most abundant in the fatty acid fractions, β-amyrin and 5a-lup-20(29)-en-3β-ol in the triterpenoid fractions, and β-sitosterol, spinasterol and chondrillasterol in the sterol fractions. The fatty acid and triterpenoid fractions showed strong antioxidant activity, similar to positive controls. Moreover, the triterpenoid fraction from I. noli-tangere seeds significantly inhibited HL-60 human leukemia cells. Other fractions showed moderate cytotoxicity. The present study suggests that I. glandulifera and I. noli-tangere are good source of omega-3 fatty acids, and they might be considered as antioxidant and chemopreventive agents.

Keywords


Antioxidant; Cytotoxicity; Fatty acids; Impatiens; Phytosterols; Triterpenoids

Full Text:


HTML PDF XML

References


Baskar N, Parimala DB, Jayakar B. 2012. Evaluation of antioxidant activity of ethanol extract of Erythrina variegata and Impatiens balsamina on chromium (VI) induced oxidative stress in Albino rats. Int. J. Res. Pharm. Pharmacotherap. 1, 31–34.

Brand-Williams W, Cuvelier E, Berset CM. 1995. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30.

Cimmino A, Mathieu V, Evidente M, Ferderin M, Banuls LMY, Masi M, De Carvalho A, Kiss R, Evidente A. 2016. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells. Fitoterapia, 109, 138–145. https://doi.org/10.1016/j.fitote.2015.12.016

Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. 2006. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 23, 394–411.

Fukumoto H, Yamaki M, Isoi I, Ishiguro K. 1996. Antianaphylactic effects of the principal compounds from the white petals of Impatiens balsamina L. Phytother. Res. 10, 202–206.

Grabowska K, Podolak I, Galanty A, Za?uski D, Makowska- W?s J, Sobolewska D, Janeczko Z, ?mudzki P. 2016. In vitro anti-denaturation and anti-hyaluronidase activities of extracts and galactolipids from leaves of Impatiens parviflora DC. Nat. Prod. Res. 30, 1219–1223.

Grabowska K, Podolak I, Galanty A, ?mudzki P, Koczurkiewicz P, Piska K, P?kala E, Janeczko Z. 2017. Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Ind. Crops Prod. 96, 71–79.

Guo JT, Lee HL, Chiang SH, Lin HI, Chang CY. 2001. Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J. Food Drug Anal. 9, 96–101.

Harrabi S, Curtis S, Hayet F, Mayer PM. 2016. Changes in the sterol compositions of milk thistle oil (Silybium marianum L.) during seed maturation. Grasas Aceites 67,

Jeon GC, Park MS, Yoon DY, Shin CH, Sin HS, Um SJ. 2006. Antitumor activity of spinasterol isolated from Pueraria roots. Exp. Mol. Med. 37, 111–120.

Jerzmanowska Z. 1967. Substancje ro?linne. Metody wyodr?bniania. PWN, Warszawa.

Kaufman HP, Keller M. 1948. Über das Vorkommen von Parinarsäure und Essigsäure in den Samenfetten der Balsaminaceae. Chem. Ber. 81, 152–158.

Lobstein A, Brenne X, Feist E, Metz N, Weniger B, Anton R. 2001. Quantitative determination of naphthoquinones of Impatiens species. Phytochem. Anal. 12, 202–205.

Nisar M, Qayum M, Shah M, Zia-Ul-Haq M, Khan I, Ahmad K, Qayum Z. 2012. Chemical constituents and antioxidant activity of n-hexane extract of Impatiens bicolor. Chem. Nat. Compd. 48, 143–146.

Ortin Y, Evans, P. 2013. trans-Tetradec-2-enoic acid in Impatiens glandulifera. Synthetic Communications 43, 1404–1412.

Panichayupakaranant P, Noguchi H, De-Eknamkul W, Sankawa U. 1995. Naphthoquinones and coumarins from Impatiens balsamina root cultures. Phytochem. 40, 1141–1143.

Pei H, Lei J, Qian S H. 2012. A new cytotoxic dinaphthofuran- 7,12dione derivatives from the seeds of Impatiens balsamina. Zhong. Yao. Cai. 35, 407–410.

Reszke R, Szepietowski J. 2016. Azelaic acid in dermatological treatment – current state of knowledge. Przegl. Dermatol. 103, 337–343.

Saleem M, Afaq F, Adhami VM, Mukhtar H. 2004. Lupeol modulates NF-?B and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23, 5203–5214.

Simopoulos AP. 2006. Evolutionary aspects of diet, the omega-6/ omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60, 502–507. https://doi.org/10.1016/j.biopha.2006.07.080

Szewczyk K, Kalemba D, Komsta ?, Nowak R. 2016a. Comparison of the essential oil composition of selected Impatiens species and its antioxidant activities. Molecules 21,

Szewczyk K, Olech M. 2017. Optimization of extraction method for LC-MS based determination of phenolic acid profiles in different Impatiens species. Phytochem. Lett. 20, 322–330.

Szewczyk K, Zidorn C, Biernasiuk A, Komsta ?, Granica S. 2016b. Polyphenols from Impatiens (Balsaminaceae) and their antioxidant and antimicrobial activities. Ind. Crop. Prod. 86, 262–272.

Thanh T, Vergenes MF, Kaloustian J, El-Moselhy T, Amiot- Carlin M, Portugal H. 2006. Effect of storage and heating on phytosterol concentrations in vegetables oils determined by GC/MS. J. Sci. Food Agric. 86, 220–225.

Tokarska-Guzik B, W?grzynek B, Urbisz A, Urbisz A, Nowak T, Bzd?ga K. 2010. Alien vascular plants in the Silesian Upland of Poland: distribution, patterns, impacts and threats. Biodivers. Res. Conserv. 19, 33–54.

Topçu G. Bioactive triterpenoids from Salvia species. 2006. J. Nat. Prod. 69, 482–487.

T?íska J, Vrchotová N, S?kora J, Moos M. 2013. Separation and identification of 1,2,4-trihydroxynaphthalene1-O-glucoside in Impatiens glandulifera Royle. Molecules 18, 8429–8439.

Villase-or IM, Domingo AP. 2000. Anticarcinogenicity potential of spinasterol isolated from squash flowers. Teratog. Carcinog. Mutagen. 20, 99–105.

Yang X, Summerhurst DK, Koval SF, Ficker C, Smith ML, Bernards MA. 2001. Isolation of an antimicrobial compound from Impatiens balsamina using bioassay–guided fractionation. Phytother. Res. 15, 676–680.

Zhang L, Zhang Y, Zhang L, Yang X, Lv Z. 2009. Lupeol, a dietary triterpene, inhibited growth, and induced apoptosis through down-regulation of DR3 in SMMC7721 cells. Cancer Invest. 27, 163–170.

Zhou XF, Zhao XY, Tang L, Ruan HL, Zhang YH, Pi HF, Xiao WL, Sun HD, Wu JZ. 2007. Three new triterpenoid saponins from the rhizomes of Impatienspritzellii var. hupehensis. J. Asian Prod. Res. 9, 379–385.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es