Grasas y Aceites, Vol 59, No 2 (2008)

Sterculia striata seed kernel oil: Characterization and thermal stability


https://doi.org/10.3989/gya.2008.v59.i2.505

Zeomar Nitão Diniz
Programa de Pós Graduação em Ciência e Tecnologia de Alimentos. Universidade Federal da Paraíba, Brazil

Pushkar Singh Bora
Programa de Pós Graduação em Ciência e Tecnologia de Alimentos. Universidade Federal da Paraíba, Brazil

Vicente Queiroga Neto
Programa de Pós Graduação em Ciência e Tecnologia de Alimentos. Universidade Federal da Paraíba, Brazil

José Marcelino Oliveira Cavalheiro
Programa de Pós Graduação em Ciência e Tecnologia de Alimentos. Universidade Federal da Paraíba, Brazil

Abstract


The objective of the present work was to characterize sterculia seed kernel oil. The chemical composition of the seeds, physicochemical properties as well as the fatty acid composition of the kernel oil was determined. The chemical composition of kernel flour presented about 25.8% lipid content. The physicochemical parameters such as acid, iodine, peroxide and saponification values were 0.82 (% as oleic acid), 69.2 (g iodine/100 g oil), 4.20 (m eq./kg) and 136.1 (mg. KOH/g oil), respectively. With respect to fatty acid composition, the oil contained 36.2, 43.7 and 10.9% saturated, monounsaturated and polyunsaturated fatty acids, respectively. Palmitic acid (31.9%), oleic acid (41.7%) and linoleic acid (10.73%) were the principal saturated, monounsaturated and polyunsaturated fatty acids. Two cyclopropanoid fatty acids i.e. sterculic and malvalic acid were identified at a concentration of 5.3 and 2.3%, respectively. With regards to the thermal stability of the oil, a thermogravimetric analysis (TGA) has shown that the oil was stable until about 284 °C, above that the oil started loosing mass, while a differential thermogravimetric analysis (DTGA) revealed three stages of degradation with an increase in temperature. These stages corresponded to the degradation of polyunsaturated, monounsaturated and saturated fatty aids. The Differential Scanning Calorimetric (DSC) analysis showed the existence of two exothermic events of energy transition, one of which is related to the oxidation reactions and another to the decomposition of the oil. Exothermic transitions in the oil were initiated at a temperature (Ti) of 287.79 °C, and terminated at 347.81 °C, with an enthalpy variation of 11.69 joules.g–1 and at initial temperature (Ti) of 384.87 °C, peak temperature (Tp) 415.71 °C, final temperature (Tf) 448.9 °C and an enthalpy of 200.83 Joules. G–1

Keywords


Fatty acid composition; Physicochemical properties; Sterculia striata seed kernel oil; Thermal stability

Full Text:


PDF

References


Association of Official Analytical Chemists. 1990. Official Methods of Analysis, 13th ed.Washington DC.

Araújo ECE. 1997. Chicha (Sterculia striata, St. Hill. Et Naud.): Uma nova opção para o mercado nacional e internacional de nozes, Informativo SBS, Brasília 16 (4) 13-15.

Aued-Pimentael S, Lago JHG, Chaves MH, Kumagai EE. 2004. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids in Sterculia stiata St. Hill. Et. Naud, seed oil. J. Chromatog. 1054, 235-239.

Braga R. 1976. Plantas do Nordeste, especialmente do Ceará. Coleção Mossoroense Escola Superior de Agronomia (ESAG). 3A Ed. XLII (42). Mossoró/RN. 498 p.

Brazil. 1998. Ministério da Saúde. Secretaria de Vigilância Sanitária. Portaria n. 27 de 13 de janeiro de 1998. Diário Oficial da União. Brasília/DF.

Carvalho JH de. 1996. Fruticultura no Nordeste Brasileiro: O potencial das espécies nativas e das exóticas pouco cultivadas (Serie Documentos) EMBRAPA no. 20, 1-5, Teresina/Pi.

Dobarganes MC, Perez-Camino MC. 1991. Fatty Acids Composition: A useful tool for the determination level in heated fats. Rev. Fr. Des. Corps Gras. 35(2) 67-70. EMBRAPA, 2002. Recomendaçôes de cultivo. EMBRAPA meio norte, Relatório técnico, p. 5.

Felsner ML, Matos JR. 1998. Análise da estabilidade térmica e temperatura de oxidação de óleos comestíveis comerciais por termogravimetria. Assoc. Brasileira de Química 47, 308-312.

International Union of pure and Applied Chemistry. 1987. Determination of the individual triglycerides in oils and fats by CG-MS. In: Standard Methods for Analysis of Oils, Fats and Derivatives. Blackwell Scientific Publications, 7th ed. IUPAC method 2, 301, Report of IUPAC Working Group WG, 2-87, Method 2325.

Kasprzycha-Guttman T, Cozeniak D. 1991. Specific heat of some pharmaceutical oils and fats measured by differential scanning calorimetry at 70 – 140ºC. Thermochim Acta 191, 41-45.

Kowalski B. 1991. Thermal oxidative decomposition of edible oil and fats: DSC studies. Thermochim Acta 184, 49-57. doi:10.1016/0040-6031(91)80134-5

Lorenzi H. 1992. Arvores Brasileiras: Manual de identificação e cultivo de plantas arboreas nativas do Brasil, Editora Plantarum Ltda., Nova Odesa, São Paulo Brasil.

Miralles J, Bassane E, Gaydou EM. 1993. Determination of cyclopropenoid fatty acids in Sterculia oils from Senegal. J. Amer. Oil Chem. Soc. 70 (2) 205-206. doi:10.1007/BF02542627

Oliveira JTA, Vasconcelos IM, Bezerra LCNM, Silveira SB, Monteiro ACO, Moreira RA. 2000. Composition and nutritional properties of seeds from Pachira aquatica Aubl., Sterculia striata St, Hill et Naud and Terminalia. Food Chem. 70, 185-191. doi:10.1016/S0308-8146(00)00076-5

Park SW, Rhee KC. 1988. A capillary GC determination of cyclopropenoid fatty acids in cottonseed oils. J. Food Sci. 53 (5) 1497-1502 doi:10.1111/j.1365-2621.1988.tb09308.x

Quintero LMS, Vianni R. 1995. Características e estabilidade dos óleos de soja. Ciên. Tecn. Aliment 15, 29-36.

Santos JCO, Souza AG, Prasad S, Santos IMG, Santos IV. 2002. Thermal stability and kinetic parameters of Thermal decomposition of commercial edible oils by thermogravimetry. J. Food Sci. 67 (4) 1363-1369. doi:10.1111/j.1365-2621.2002.tb10296.x

Santos JCO, Santos IMG, Conceição MM, Porto SL, Trinidade MFS, Souza AG, Prasad S, Fernandes Junior VJ, Araújo AS. 2004. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Thermal Analysis and Calorimetry 75, 419-428 doi:10.1023/B:JTAN.0000027128.62480.db

SAS Institute (1996) Users Guide to Statistics, Verson 6.12, North Carolina State University, Carry, USA., 956 pp.

Simon P, Kolman L, Niklova I, Schmidt S. 2000. Analysis of the induction period of oxidation of edible oils by Differential Scanning Calorimetry. J. Amer. Oil Chem. Soc. 77 (6) 639-642. doi:10.1007/s11746-000-0103-8

Souza AG de, Santos JCO, Conceição MM, Silva MCD, Prasad S. 2004. A thermoanalytic and kinetic study of sunflower oil. Brazilian J. Chem. Engg. 21 (2) 265-273. doi:10.1590/S0104-66322004000200017

Warner K, Frankel EN, Noulton KJ. 1986. Effect of thermal tempering storage: damage and low lypoxygenase (L-1) activity on quality of crude soybean oil. J. Amer. Oil Chem. Soc. 63, 425-432.

Wesolowski M. 1993. Quality control of soybean oils by thermogravimetry. Fett-Wissenschaft Technologie 95 (10) 377-383. doi:10.1002/lipi.19930951005




Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es