Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system

Authors

  • A. K. Singh Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology
  • M. Mukhopadhyay Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology

DOI:

https://doi.org/10.3989/gya.094811

Keywords:

Glycerolysis, Glycerol, Lipase, Lipase B Candida Antarctica, Monoglyceride, Olive oil

Abstract


In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 °C temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented.

Downloads

Download data is not yet available.

References

Berger M, Schneider MP. 1992. Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglycerols. J. Am. Oil Chem. Soc. 69, 961-965. http://dx.doi.org/10.1007/BF02541058

Blasi F, Cossignani L, Simonetti MS, Damiani,P. 2007. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzyme Microb. Technol. 41, 727-732. http://dx.doi.org/10.1016/j.enzmictec.2007.06.005

Cao SG, Gao XG, Zhang KE. 1996. Enzymatic preparation of monoglycerides via glycerolvsis of fats and oils catalyzed by lipase from Pseudomonas species. Ann. NY. Acad. Sci. 799, 670-677. http://dx.doi.org/10.1111/j.1749-6632.1996.tb33272.x

Coteron A, Martinez M, Aracil J. 1998. Reactions of olive oil and glycerol over immobilized lipases. J. Am. Oil Chem. Soc. 75, 657-660. http://dx.doi.org/10.1007/s11746-998-0080-1

Damstrup ML, Jensen T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2005. Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. J. Am. Oil Chem. Soc. 82, 559- 564. http://dx.doi.org/10.1007/s11746-005-1109-y

Damstrup ML, Jensena T, Sparsø FV, Kiil SZ, Jensen AD, Xu X. 2006a. Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. J. Am. Oil Chem. Soc. 83, 27-33. http://dx.doi.org/10.1007/s11746-006-1171-5

Damstrup ML, Abildskov J, Kiil SZ, Jensen AD, Sparso FV, Xu X. 2006b. Evaluation of binary solvent mixtures for efficient monoacylglycerol production by continuous enzymatic glycerolysis. J. Agric. Food Chem. 54, 7113-7119. http://dx.doi.org/10.1021/jf061365r PMid:16968070

Elfman-Borjesson I, Harrod M. 1999. Synthesis of monoglycerides by glycerolysis of rapeseed oil using immobilized lipase. J. Am. Oil Chem. Soc. 76, 701- 707. http://dx.doi.org/10.1007/s11746-999-0162-8

Ferreira-Dias S, Fonseca MMR. 1995. Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess. Eng. 12, 327-337. http://dx.doi.org/10.1007/BF00369510

Ferreira-Dias S, Correia AC, Baptista FO, Fonseca MMR. 2001. Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. J. Mol. Catal. B: Enzym. 11, 699-711. http://dx.doi.org/10.1016/S1381-1177(00)00079-5

Firestone D. 2005. Olive oil. Bailey’s Industrial Oil and Fat Products. United States Food and Drug Administration. John Wiley & Sons, Inc. New York, USA.

Fregolente PBL, Fregolente LV, Pinto GMF, Batistella BC, Wolf-Maciel MR, Filho RM. 2008. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. Appl. Biochem. Biotechnol. 146, 165-172. http://dx.doi.org/10.1007/s12010-008-8133-3 PMid:18421596

Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160, 1879-1887. http://dx.doi.org/10.1007/s12010-009-8822-6 PMid:19862491

Garcia HS, Yang B, Parkin KL. 1996. Continuous reactor for enzymatic glycerolysis of butter oil in the absence of solvent. Food Res. Int. 28, 605-609. http://dx.doi.org/10.1016/0963-9969(95)00051-8

Ghamgui H, Miled N, Rehai A, Karra-Chaabouni M, Gargouri Y. 2006. Production of mono-olein by immobilized Staphylococcus simulans lipase in a solvent-free system: optimization by response surface methodology. Enzyme Microb. Technol. 39, 717-723. http://dx.doi.org/10.1016/j.enzmictec.2005.12.014

Guo Z, Xu X. 2006. Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system. Green Chem. 8, 54-62. http://dx.doi.org/10.1039/b511117j

Jackson MA, King JW. 1997. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide. J. Am. Oil Chem. Soc. 74,103-106. http://dx.doi.org/10.1007/s11746-997-0152-7

Kaewthong W, H-Kittikun A. 2004. Glycerolysis of palm olein by immobilized lipase PS in organic solvents. Enzyme Microb. Technol. 35, 218-222. http://dx.doi.org/10.1016/j.enzmictec.2004.04.011

Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 1525-1530. http://dx.doi.org/10.1016/j.procbio.2003.12.002

Kasamatsu T, Ogura R, Ikeda N, Motita O, Saigo K, Watabe H, Saito Y, Suzuki H. 2005. Genotoxicity studies on dietary diacylglycerol (DAG) oil. Food Chem. Toxicol. 43, 253-260. http://dx.doi.org/10.1016/j.fct.2004.10.001 PMid:15621338

Langone MAP, De Abreu ME, Rezende MJC, Sant’AnnaJr, GL. 2002. Enzymatic synthesis of medium chain monoglycerides in a solvent-free system. Appl. Biochem. Biotechnol. 98, 987-996. http://dx.doi.org/10.1385/ABAB:98-100:1-9:987

McNeill GP, Yamane T. 1991. Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 6-10. http://dx.doi.org/10.1007/BF02660299

McNeill GP, Shimizu S, Yamane, T. 1991.High-yield enzymatic glycerolysis of fats and oils. J. Am. Oil Chem. Soc. 68, 1-5. http://dx.doi.org/10.1007/BF02660298

Nagao T, Watanabe H, Gotoh N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. 2000. Dietary diacylglycerol suppress accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130, 792-797. PMid:10736331

Noureddini H, Harkey DW, Gutsmanc MR. 2004. A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203-207. http://dx.doi.org/10.1007/s11746-004-0882-y

Pawongrat R, Xu X, H-Kittikun A. 2007. Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem. 104, 251-258. http://dx.doi.org/10.1016/j.foodchem.2006.11.036

Stevenson DE, Stanley RA, Furneaux RH. 1993. Glycerolysis of tallow with immobilized lipase. Biotechnol. Lett. 15, 1043-1048. http://dx.doi.org/10.1007/BF00129935

Tüter M, Aksoy HA. 2000. Solvent-free glycerolysis of palm and palm kernel oils catalyzed by commercial1, 3-specific lipase from Humicolalanuginosa and composition of glycerolysis products. Biotechnol. Lett. 22, 31-34. http://dx.doi.org/10.1023/A:1005604406705

Valério A, Kruger RL, Ninow J, Corazza FC, Oliveira DD, Oliveira JV, Corazza ML. 2009. Kinetics of solventfree lipase-catalyzed glycerolysis of olive oil in surfactant system. J. Agric. Food Chem. 57, 8350-8356. http://dx.doi.org/10.1021/jf901771m PMid:19708657

Valério A, Rovani S, Treichel H, de Oliveira D, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess Biosyst. Eng. 33, 805-812. http://dx.doi.org/10.1007/s00449-009-0402-1 PMid:20091052

Wongsakul S, Prasertsan P, Bornscheuer UT, H-Kittikun A. 2003. Synthesis of 2-monoglycerides by alcoholysis of palm oil and tuna oil using immobilized lipases. Eur. J. Lipid Sci. Technol. 105, 68-73. http://dx.doi.org/10.1002/ejlt.200390019

Yamane T, Hoq MM, Itoh S, Shimizu S. 1986. Glycerolysis of Fat by Lipase.J. Jpn.Oil Chem.Soc. 35, 625-631. http://dx.doi.org/10.5650/jos1956.35.625

Yamane T, Kang ST, Kawahara K, Koizumi Y. 1994. High yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow. J. Am. Oil Chem. Soc. 71, 339-342. http://dx.doi.org/10.1007/BF02638064

Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids, 12, 299-312. http://dx.doi.org/10.1111/j.1745-4522.2005.00025.x

Zaher FA, Aly SM, and El-Kinawy OS.1998. Lipasecatalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites. 49, 411-414. http://dx.doi.org/10.3989/gya.1998.v49.i5-6.750

Zeng F, Yang B, Wang Y, Wang W, Ning Z, Li L. 2010. Enzymatic Production of Monoacylglycerols with Camellia Oil by the Glycerolysis Reaction. J. Am. Oil Chem. Soc. 87, 531-537. http://dx.doi.org/10.1007/s11746-009-1533-x

Zhong N, Li L, Xu X, Cheong L, Li B, Hu S, Zhao X. 2009. An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. J. Am. Oil Chem. Soc. 86, 783-789. http://dx.doi.org/10.1007/s11746-009-1402-7

Downloads

Published

2012-06-30

How to Cite

1.
Singh AK, Mukhopadhyay M. Olive oil glycerolysis with an immobilized lipase Candida antarctica in a solvent free system. Grasas aceites [Internet]. 2012Jun.30 [cited 2024Mar.28];63(2):202-8. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1368

Issue

Section

Research