Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by Bayesian inference

Authors

  • R. Cardoso de Oliveira Universidade Estadual de Maringá-Departamento de Engenharia Química
  • R. M. Rossi Universidade Estadual de Maringá-Departamento de Engenharia Química
  • M. L. Gimenes Universidade Estadual de Maringá-Departamento de Engenharia Química
  • S. Jagadevan University of Oxford-Department of Engineering Science
  • W. Machado Giufrida Universidade Estadual de Maringá-Departamento de Engenharia Química
  • S. T. Davantel de Barros Universidade Estadual de Maringá-Departamento de Engenharia Química

DOI:

https://doi.org/10.3989/gya.095512

Keywords:

Bayesian inference, Passion fruit, Seed oil, Supercritical CO2

Abstract


The extraction of oil from passion fruit seeds using supercritical CO2 was studied. Experimental data were obtained for extraction conducted at 15, 20 and 25 MPa; at temperatures of 40 and 50 °C with CO2 flow rates of 1.5 and 3.0 mL min–1. An increase in the pressure, temperature and CO2 flow rate increased the yield. The maximum extraction yield obtained was 18.5%. The mass transfer coefficients for passion fruit oil were found to be 8.496 3 10-5 s-1 at 25 MPa, 50 °C and 3 mL s–1 CO2 flow rate. Dilatant fluid behavior was observed in all tests of the rheological study.

Downloads

Download data is not yet available.

References

Adeib IS, Norhuda I, Roslina RN, Ruzitah MS. 2010. Mass transfer and solubility of Hibiscus cannabinus L. seed oil in supercritical carbon dioxide. J. App. Sci. 10, 1140-1145. http://dx.doi.org/10.3923/jas.2010.1140.1145

Acosta GM, Smith RL, Arai K. 1996. High-pressure PVT behavior of natural fats and oils, trilaurin, triolein, and n-tridecane from 303K to 353K from atmospheric pressure to 150 MPa, J. Chem. Eng. Data 41, 961-969. http://dx.doi.org/10.1021/je960006x

Andrich G, Balzini S, Zinnai A, De Vitis V, Silvestri S, Venturi F, Fiorentini R. 2001. Supercritical fluid extraction in sunflower seed technology, Eur. J. Lipid. Sci.Technol. 103, 151-157. http://dx.doi.org/10.1002/1438-9312(200103)103:3<151::AID-EJLT151>3.0.CO;2-T

Angus S, Armstrong B, de Reuck KM. 1976. International Thermodynamic Tables of the Fluid State-3 Carbon Dioxide, Pergamon, New York, USA.

AOAC. 1990, The density (985.19), acid value (969.17), peroxide value (965.33), saponification number (920.160), non-saponification matter (933.08), iodine value (993.20), insoluble impurities (AOCS Ca 3a-46) and moist and volatile matter (926.12), in: Official Methods of Analysis, 15th ed., Association of Official Analytical Chemists, Washington, USA.

Brasil. 2008. Instituto Adolfo Lutz, Normas Analíticas. Métodos Químicos e Físicos para Análise de Alimentos, São Paulo. Available at: http://www.ial.sp.gov.br.

Corso MP, Fagundes-Klen MR, Silva EA, Cardozo Filho L, Santos JN, Freitas LS, Dariva C. 2010. Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide, J. Supercrit. Fluids 52, 56-61. http://dx.doi.org/10.1016/j.supflu.2009.11.012

Döker O, Salgin U, Yildiz N, Aydo<eth>mus M, Çalimli A. 2010. Extraction of sesame seed oil using supercritical CO2 and mathematical modeling, J. Food Eng. 97, 360-366. http://dx.doi.org/10.1016/j.jfoodeng.2009.10.030

Fiori L, 2007. Grape seed oil supercritical extraction kinetic and solubility data: Critical approach and modeling, J. Supercrit. Fluids 43, 43-54. http://dx.doi.org/10.1016/j.supflu.2007.04.009

Freitas LS, Oliveira JV, Dariva C, Jacques RA, Caramão EB. 2008. Extraction of Grape Seed Oil Using Compressed Carbon Dioxide and Propane: Extraction Yields and Characterization of Free Glycerol Compounds, J. Agric. Food Chem. 56, 2558-2564. http://dx.doi.org/10.1021/jf0732096 PMid:18345635

Geweke J. 1992. Evaluating the accuracy of samplingbased approaches to the calculation of posterior moments (with discussion), 169-193. In: Bernardo J M, Berger JO, Dawid A P, Smith A F M (Ed.). Bayesian Statistics, 4. Oxford.

Gracia I, García MT, Rodríguez JF, Fernández MP, de Lucas A. 2009. Modeling of the phase behavior for vegetable oils at supercritical conditions, J. Supercrit. Fluids 48,189-194. http://dx.doi.org/10.1016/j.supflu.2008.11.006

Han X, Cheng L, Zhang R, Bi J. 2009. Extraction of safflower seed oil by supercritical CO2. J. Food Eng. 92, 370-376. http://dx.doi.org/10.1016/j.jfoodeng.2008.12.002

Heidelberger P, Welch P. 1983. Simulation run length control in the presence of an initial transient, Operations Research 31, 1109-1144. http://dx.doi.org/10.1287/opre.31.6.1109

Herrero M, Mendiola JA, Cifuentes A, Ibá-ez E. 2010. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 1217, 2495-2511. http://dx.doi.org/10.1016/j.chroma.2009.12.019 PMid:20022016

Ixtaina VY, Veja A, Nolasco SM, Tomás MC, Gimeno M, Bárzana E, Tecante A. 2010. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization, J. Supercrit. Fluids 55, 192-199. http://dx.doi.org/10.1016/j.supflu.2010.06.003

Jachmanián I, Margenat L, Torres AI, Grompone MA. 2006. Estabilidad oxidativa y contenido de tocoferoles en el aceite de canola extraído com CO2 supercrítico. Grasas Aceites 57, 155-159.

Kiriamiti HK, Rascol E, Marty A. Condoret JS. 2001. Extraction rates of oil from high oleic sunflower seeds with supercritical carbon dioxide, Chem. Eng. Process. 41,711-718. http://dx.doi.org/10.1016/S0255-2701(01)00191-X

Lasekan O, Abdulkarim SM. 2012. Extraction of oil from tiger nut (Cyperus esculentus L.) with supercritical carbon dioxide (SC-CO2). Food Sci. Techol. 47, 287-292.

Liu S, Yang F, Zhang C, Ji H, Hong P, Deng C. 2009. Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. J. Supercrit. Fluids 48, 9-14. http://dx.doi.org/10.1016/j.supflu.2008.09.013

Lopez, AS. 1980. Lipids from the seeds of passion fruit (Passiflora edulis). Revista Theobroma 10, 47-50.

Louli V, Folas G, Voutsas E, Magaulas K. 2004. Extraction of parsley seed oil by supercritical CO2, J. Supercrit. Fluids 30, 163-174. http://dx.doi.org/10.1016/j.supflu.2003.07.003

Meziane S, Kadi H, Lamrous O. 2006. Kinetics study of oil extraction from olive foot cake, Grasas Aceites 57, 175-177.

Morton JF. 1987. Sweet calabash, Fruits of Warm Climate, Morton Publishers, Miami, USA.

Nyanzi SA, Carstensen B, Schwack WA. 2005, A Comparative Study of Fatty Acid Profiles of Passiflora Seed Oils from Uganda, J. Am. Oil Chem. Soc. 82, 41-44. http://dx.doi.org/10.1007/s11746-005-1040-2

Oliveira RC, Rossi RM, Barros STD. 2009. Aplicação da metodologia Bayesiana para o estudo reológico da polpa de uva, Revista Brasileira de Produtos Agroindustriais 11, 73-80.

Oliveira RC, Rossi RM, Barros STD. 2011. Estudo do efeito da temperatura sobre o comportamento reológico das polpas de gabiroba e goiaba, Acta Scientiarum. Technol. 33, 31-37.

Oliveira RC, Docê RC, Barros STD. 2012a. Clarification of passion fruit juice by microfiltration: analyses of operating parameters, study of membrane fouling and juice quality, J. Food Eng. 111, 432-439. http://dx.doi.org/10.1016/j.jfoodeng.2012.01.021

Oliveira RC, Rossi RM, Barros STD. 2012b. Estudo reológico da polpa de morango (Fragaria vesca) em diferentes temperaturas, Acta Scientiarum. Technol. 3, 283-288. (b)

Oliveira RC, Barros STD, Gimenes ML. 2013. The extraction of passion fruit oil with green solvents. J. Food Eng.

Ozkal SG, Yener ME, Bayy’ndy’rli L. 2005. Mass transfer modeling of apricot kernel oil extraction with supercritical carbon dioxide, J. Supercrit. Fluids 35, 119-127. http://dx.doi.org/10.1016/j.supflu.2004.12.011

Papamichail V, Louli K, Magoulas I. 2000. Supercritical fluid extraction of celery seed oil. J. Supercrit. Fluids 18, 213-226. http://dx.doi.org/10.1016/S0896-8446(00)00066-8

Reverchon E. 1997. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 10, 1-37. http://dx.doi.org/10.1016/S0896-8446(97)00014-4

Sánchez-Vicente Y, Cabanas A, Renuncio JAR, Pando C. 2009. J. Supercrit. Fluids, 49, 167-173. http://dx.doi.org/10.1016/j.supflu.2009.01.001

Salgin U, Doker O, Calimli A. 2006. Extraction of sunflower oil with supercritical CO2: Experiments and modeling J. Supercrit. Fluids. 38, 326-331. http://dx.doi.org/10.1016/j.supflu.2005.11.015

Shucheng L, Feng Y, Jiali L, Chaohua Z, Hongwu J, Pengzhi H. 2008. Physical and chemical analysis of Passiflora seeds and seed oil from China. Int. J. Food Sci. Nutr. 59, 706-715. http://dx.doi.org/10.1080/09637480801931128 PMid:18608550

Saxena D, Sharma SK, Sambi SS. 2011. Kinetics and thermodynamics of cottonseed oil extraction. Grasas Aceites 62, 198-205. http://dx.doi.org/10.3989/gya.090210

Souza AT, Benazzi TL, Grings MB, Cabral V, Silva EA, Cardozo-Filho L, Antunes OAC. 2008. Supercritical extraction process and phase equilibrium of Candeia (Eremanthus erithropappus) oil using supercritical carbon dioxide, J. Supercrit. Fluids 47, 182-187. http://dx.doi.org/10.1016/j.supflu.2008.08.001

Sovová H. 1994. Rate of Vegetable Oil Extraction with Supercritical CO2–I and II Modelling of Extraction Curves. Chem. Eng. Sci. 49, 409. http://dx.doi.org/10.1016/0009-2509(94)87012-8

Temelli F. 2009. Perspectives on supercritical fluid processing of fats and oils, J. Supercrit. Fluids 47, 583-590. http://dx.doi.org/10.1016/j.supflu.2008.10.014

Toro-Vázquez R, Infante-Guerrero R. 1993. Regressional models that describe oil absolute viscosity. J. Am. Oil Chem. Soc. 70, 1115-1119. http://dx.doi.org/10.1007/BF02632152

Downloads

Published

2013-09-30

How to Cite

1.
Cardoso de Oliveira R, Rossi RM, Gimenes ML, Jagadevan S, Machado Giufrida W, Davantel de Barros ST. Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by Bayesian inference. Grasas aceites [Internet]. 2013Sep.30 [cited 2024Apr.19];64(4):400-6. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1446

Issue

Section

Research