Recovery of iron after Fenton-like secondary treatment of olive mill wastewater by nano-filtration and low-pressure reverse osmosis membranes
DOI:
https://doi.org/10.3989/gya.1001153Keywords:
Iron recovery, Nano-filtration, Olive mill wastewater, Reverse osmosis, Wastewater treatmentAbstract
In this work, the performances of novel nano-filtration (NF) and low-pressure reverse osmosis (RO) polymeric membranes were examined with the aim of recovering the iron used as catalyst in former secondary treatment based on the Fenton-like advanced oxidation of olive mill wastewater (OMW). Results highlight that both membranes exhibit a good performance towards the rejection of iron (99.1% for the NF membrane vs. 100% for the low-pressure RO membrane) in the secondary-treated OMW effluent, thus permitting the recovery of iron in the concentrate stream in order to recycle it back into the oxidation reactor to reduce catalyst consumption. Finally, the permeate streams could be re-used for irrigation. Major productivity was observed by the selected NF membrane, about 47.4 L/hm2 upon 9 bar, whereas 30.9 L/hm2 could be yielded with the RO membrane under an operating pressure of 8 bar. Moreover, a sensibly lower fouling index was measured on the NF membrane (0.0072 in contrast with 0.065), which ensures major steady-state performance on this membrane and a longer service lifetime. This also results in lower required membrane area and membrane plant over dimension (4 modules in case of RO operation whereas only 2 modules for NF).
Downloads
References
Akar T, Tosun I, Kaynak Z, Ozkara E, Yeni O, Sahin E N, Akar S T. 2009. An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. J. Hazard. Mater. 166, 1217-1225. http://dx.doi.org/10.1016/j.jhazmat.2008.12.029 PMid:19153007
Akdemir EO, Ozer A. 2009. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 249, 660-666. http://dx.doi.org/10.1016/j.desal.2008.06.035
Aktas ES, Imre S, Esroy L. 2001. Characterization and lime treatment of olive mill wastewater. Water Res. 35, 2336-2340. http://dx.doi.org/10.1016/S0043-1354(00)00490-5
Al-Malah K, Azzam MOJ, Abu-Lail NI. 2000. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 20, 225-234. http://dx.doi.org/10.1016/S1383-5866(00)00114-3
Annesini M, Gironi F. 1991. Olive oil mill effluent: ageing effects on evaporation behavior. Water Research, 25, 1157-1960. http://dx.doi.org/10.1016/0043-1354(91)90210-H
APHA, AWWA, WPCF. 1992. Standard Methods for water and wastewater analysis. Díaz de Santos, p. 1816, ISBN: 84-7978-031-2, Madrid.
ASTM International D 4582 - 91, 2001. Standard Practice for Calculation and Adjustment of the Stiff and Davis Stability Index for Reverse Osmosis.
Beltrán J, Torregrosa J, García J, Domínguez JR. 2000. Ozone treatment of olive mill wastewater. Grasas Aceites 51, 32-46.
Baccar R, Bouzid J, Feki M, Montiel A. 2009. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 162, 1522-1529. http://dx.doi.org/10.1016/j.jhazmat.2008.06.041 PMid:18653277
Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32-46. http://dx.doi.org/10.3989/gya.2006.v57.i1.20
Cegarra J, Paredes C, Roig A, Bernal MP, García D. 1996. Use of olive mill wastewater compost for crop production. Int. Biodet. Biodegrad. 38, 193-203. http://dx.doi.org/10.1016/S0964-8305(96)00051-0
Coskun T, Debik E, Demir N M. 2010. Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination 259, 65-70. http://dx.doi.org/10.1016/j.desal.2010.04.034
Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A. 2007. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58, 32-46. http://dx.doi.org/10.3989/gya.2007.v58.i1.6
Fari-as Iglesias M. 1998. Ósmosis inversa: fundamentos, tecnología y aplicaciones. Ed. McGraw-Hill.
Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E. 2010. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883-3892. http://dx.doi.org/10.1016/j.watres.2010.05.005 PMid:20639013
Garrido Hoyos SE, Martínez Nieto L, Camacho Rubio F, Ramos Cormenzana A. 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Process Biochem. 37, 1169-1176. http://dx.doi.org/10.1016/S0032-9592(01)00332-6
Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E. 2010. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Research 44, 2773-2780. http://dx.doi.org/10.1016/j.watres.2010.02.015 PMid:20199791
Greenberg AE, Clesceri LS, Eaton AD. 2005. Standard Methods for the Examination of Water and Wastewater, APHA/ AWWA/WEF, 22th ed., Washington DC. Cabs.
Haddadin M S Y, Haddadin J, Arabiyat O I, Hattar B. 2009. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Biores. Tech. 100, 4773-4782. http://dx.doi.org/10.1016/j.biortech.2009.04.047 PMid:19467866
Hodaifa G, Ochando-Pulido JM, Rodriguez-Vives S, Martínez- Férez A. 2013a. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 220, 117-124. http://dx.doi.org/10.1016/j.cej.2013.01.065
Hodaifa G, Eugenia-Sánchez M, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 99, 1111-1117. http://dx.doi.org/10.1016/j.biortech.2007.02.020 PMid:17434730
Hodaifa G, Ochando-Pulido JM, Ben-Driss-Alami S, Rodriguez- Vives S, Martínez-Férez A. 2013b. Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crops Prod. 49, 526-534. http://dx.doi.org/10.1016/j.indcrop.2013.05.039
Inan H, Dimoglo A, ?im?ek H, Karpuzcu M. 2004. Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol. 36, 23-31. http://dx.doi.org/10.1016/S1383-5866(03)00148-5
Jain S, Gupta SK, 2004. Analysis of modified surface force pore flow model with concentration polarization and comparison with Spiegler-Kedem model in reverse osmosis systems. J. Membr. Sci. 232, 45-62. http://dx.doi.org/10.1016/j.memsci.2003.11.021
Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M. 2009. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Separ. Purif. Technol. 70, 141-146. http://dx.doi.org/10.1016/j.seppur.2009.09.008
Madaeni SS, Samieirad S. 2010. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 257, 80-86. http://dx.doi.org/10.1016/j.desal.2010.03.002
Martínez Nieto L, Ben Driss Alami S, Hodaifa G, Faur C, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2010. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 32, 467-471. http://dx.doi.org/10.1016/j.indcrop.2010.06.017
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011a. Flocculation-sedimentation combined with chemical oxidation process. Clean - Soil, air, water 39, 949-955. http://dx.doi.org/10.1002/clen.201000594
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011b. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 173, 503-510. http://dx.doi.org/10.1016/j.cej.2011.08.022
Marques IP. 2001. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233-239. http://dx.doi.org/10.1016/S0011-9164(01)00224-7
Mott R L, Untener J A, Applied Fluid Mechanics, 7th edition, University of Dayton, 2014.
Ochando-Pulido JM, Rodriguez-Vives S, Martínez-Férez A. 2012a. The effect of permeate recirculation on the depuration of pretreated olive mill wastewater through reverse osmosis membranes. Desalination 286, 145-154. http://dx.doi.org/10.1016/j.desal.2011.10.041
Ochando-Pulido JM, Hodaifa G, Rodriguez-Vives S, Martínez- Férez A. 2012b. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater. Water Res. 46, 4621-4632. http://dx.doi.org/10.1016/j.watres.2012.06.026 PMid:22771149
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez- Vives S, Martínez-Férez A, 2013a. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions. J. Hazard. Mater. 263, 168-176. http://dx.doi.org/10.1016/j.jhazmat.2013.03.041 PMid:23602253
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez- Vives S, Martínez-Férez A, 2013b. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment, J. Hazard. Mater. 263, 158-67. http://dx.doi.org/10.1016/j.jhazmat.2013.07.015 PMid:23910394
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Martínez- Férez A, 2014. A novel photocatalyst with ferromagnetic core used for the treatment of olive oil mill effluents from two-phase production process. The Scientific World Journal 2014. PMid:24592177 PMCid:PMC3925542
Ochando-Pulido J.M., Stoller M, 2014. Boundary flux optimization of a nanofiltration membrane module used for the treatment of olive mill wastewater from a two-phase extraction process. Separ. Purif. Technol. 130, 124-131. http://dx.doi.org/10.1016/j.seppur.2014.04.035
Papadimitriou EK, Chatjipavlidis I, Balis C. 1997. Application of composting to olive mill wastewater treatment. Environ. Technol. 18, 101-107. http://dx.doi.org/10.1080/09593331808616517
Paraskeva P, Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 81, 475-485. http://dx.doi.org/10.1002/jctb.1553
Paraskeva C A, Papadakis V G, Tsarouchi E, Kanellopoulou D G, Koutsoukos P G. 2007. Membrane processing for olive mill wastewater fractionation. Desalination 213, 218-229. http://dx.doi.org/10.1016/j.desal.2006.04.087
Russo C. 2007. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 288, 239-246. http://dx.doi.org/10.1016/j.memsci.2006.11.020
Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D. 2012. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy 2012.
Sarika R, Kalogerakis N, Mantzavinos D. 2005. Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 31, 297-304. http://dx.doi.org/10.1016/j.envint.2004.10.006 PMid:15661298
Stasinakis A S, Elia I, Petalas A V, Halvadakis C P. 2008. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 160, 408-413. http://dx.doi.org/10.1016/j.jhazmat.2008.03.012 PMid:18417287
Stoller M. 2008. Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: a case study. Chem. Eng. Process. 47, 1165-1170. http://dx.doi.org/10.1016/j.cep.2007.07.012
Stoller M. 2009. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 240, 209-217. http://dx.doi.org/10.1016/j.desal.2007.12.042
Stoller M. 2011. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 168, 1140-1148. http://dx.doi.org/10.1016/j.cej.2011.01.098
Stoller M, Ochando-Pulido JM. 2012. Going from a critical flux concept to a threshold flux concept on membrane processes treating olive mill wastewater streams. Procedia Eng. 44, 607-608. http://dx.doi.org/10.1016/j.proeng.2012.08.500
Stoller M, Ochando-Pulido J.M., 2014. About merging threshold and critical flux concepts into a single one: the boundary flux. The Scientific World J. 2014, 656101. http://dx.doi.org/10.1155/2014/656101 PMid:24592177 PMCid:PMC3925542
Stoller M, Ochando-Pulido J.M., 2015. The boundary flux handbook: A comprehensive database of critical and threshold flux values for membrane practitioners, Amsterdam (Netherlands), Elsevier.
Stoller M, Ochando-Pulido JM, di Palma L, Martínez-Férez A. 2015. Membrane process enhancement of 2-phase and 3-phase olive mill wastewater treatment plants by photocatalysis with magnetic-core titanium dioxide nanoparticles. J. Ind. & Eng. Chem. In press, 2015. http://dx.doi.org/10.1016/j.jiec.2015.05.015
Tekin A R, Co?kun Dalgıç A. 2000. Biogas production from olive pomace. Resour. Conserv. Recy. 30, 301-313. http://dx.doi.org/10.1016/S0921-3449(00)00067-7
Tezcan Ü, U?ur S, Koparal AS, Ö?ütveren ÜB. 2006. Electrocoagulation of olive mill wastewaters. Sep. Purif. Technol. 52, 136-141. http://dx.doi.org/10.1016/j.seppur.2006.03.029
Turano E, Curcio S, De Paola M G, Calabrò V, Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J. Membr. Sci. 206, 519-531. http://dx.doi.org/10.1016/S0376-7388(02)00369-1
Vincent-Vela MC, Cuartas-Uribe B, Álvarez-Blanco S, Lora- García J. 2011. Analysis of fouling resistances under dynamic membrane filtration. Chem. Eng. Process. 50, 404–408. http://dx.doi.org/10.1016/j.cep.2011.02.010
Yiantsios S G, Karabelas A J. 2002. An assessment of the Silt Density Index based on RO membrane colloidal fouling experiments with iron oxide particles. Desalination 15, 229- 238.
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.